首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M Sendtner  G W Kreutzberg  H Thoenen 《Nature》1990,345(6274):440-441
The period of natural cell death in the development of rodent motor neurons is followed by a period of sensitivity to axonal injury. In the rat this early postnatal period of vulnerability coincides with that of very low ciliary neurotrophic factor (CNTF) levels in the sciatic nerve before CNTF increases to the high, adult levels. The developmental time course of CNTF expression, its regional tissue distribution and its cytosolic localization (as suggested by its primary structure) favour a role for CNTF as a lesion factor rather than a target-derived neurotrophic molecule like nerve growth factor. Nevertheless CNTF exhibits neurotrophic activity in vitro on different populations of embryonic neurons. To determine whether the vulnerability of motor neurons to axotomy in the early postnatal phase is due to insufficient availability of CNTF, we transected the axons of newborn rat motor neurons and demonstrated that local application of CNTF prevents the degeneration of the corresponding cell bodies.  相似文献   

2.
Ciliary neurotrophic factor (CNTF) supports the survival of embryonic motor neurons in vitro and in vivo, and prevents lesion-mediated degeneration of rat motor neurons during early post-natal stages. Here we report that CNTF greatly reduces all the functional and morphological changes in pmn/pmn mice, an autosomal recessive mutant leading to progressive caudo-cranial motor neuron degeneration. The first manifestations of progressive motor neuronopathy in homozygous pmn/pmn mice become apparent in the hind limbs at the end of the third post-natal week, and all the mice die up to 6 or 7 weeks after birth from respiratory paralysis. Treatment with CNTF prolongs survival and greatly improves motor function of these mice. Moreover, morphological manifestations, such as loss of motor axons in the phrenic nerve and degeneration of facial motor neurons, were greatly reduced by CNTF, although the treatment did not start until the first symptoms of the disease had already become apparent and substantial degenerative changes were already present. The protective and restorative effects of CNTF in this mouse mutant give new perspectives for the treatment of human degenerative motor neuron diseases with CNTF.  相似文献   

3.
D R Kaplan  D Martin-Zanca  L F Parada 《Nature》1991,350(6314):158-160
Nerve growth factor (NGF) is a neurotrophic factor responsible for the differentiation and survival of sympathetic and sensory neurons as well as selective populations of cholinergic neurons. NGF binds to specific cell-surface receptors but the mechanism for transduction of the neurotrophic signal is unknown. Several experiments using the NGF-responsive pheochromocytoma cell line, PC12, have implicated tyrosine phosphorylation in NGF-mediated responses, although no NGF-specific tyrosine kinases have been identified. Here we show that NGF induces tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product, a tyrosine kinase receptor whose expression is restricted in vivo to neurons of the sensory spinal and cranial ganglia of neural crest origin. Tyrosine phosphorylation of trk by NGF is rapid, specific and occurs with picomolar quantities of factor, indicating that the response is mediated by physiological amounts of NGF. Activation of the trk tyrosine kinase receptor provides a possible mechanism for signal transduction by NGF.  相似文献   

4.
M Sendtner  B Holtmann  R Kolbeck  H Thoenen  Y A Barde 《Nature》1992,360(6406):757-759
Motoneurons innervating the skeletal musculature were among the first neurons shown to require the presence of their target cells to develop appropriately. But the characterization of molecules allowing motoneuron survival has been difficult. Ciliary neurotrophic factor prevents the death of motoneurons, but its gene is not expressed during development. Although the presence of a neurotrophin receptor on developing motoneurons has suggested a role for neurotrophins, none could be shown to promote motoneuron survival in vitro. We report here that brain-derived neurotrophic factor can prevent the death of axotomized motoneurons in newborn rats, suggesting a role for this neurotrophin for motoneuron survival in vivo.  相似文献   

5.
6.
The effect of ciliary neurotrophic factor (CNTF) on reactive astrogliosis was studied on a mechanical scratch model of the confluent astrocytic cultures from newborn rat brain. Following injury, the astrocytes at the edge of the injured area displayed a typical process of the reactive astrogliosis. This process included apparently hyperplastic change and significantly increased GFAP expression of the flat astrocytes, and migration to the injured area of the O-2A progenitor cells and their differentiation into process-bearing astrocytes. Exogenous CNTF applied to the cell cultures significantly promoted the hyperplasia and GFAP expression of the flat astrocytes. The results suggest that CNTF can enhance the reactive astrogliosis in the injured area.  相似文献   

7.
通过大肠杆菌重组表达人睫状神经营养因子突变体(CNTFm),并进行PEG修饰,旨在降低免疫原性.该突变体将天然CNTF的C端15个氨基酸删除,大肠杆菌表达的CNTFm以包含体形式存在,经复性、纯化获得纯度达到95%的目的蛋白.体内生物学活性测定结果显示,给药10 d,小鼠最大体重减少率达31%,产生的最高中和抗体滴度达到1:6 400; 经PEG修饰,CNTF突变体的生物学活性降低了34%,但最高中和抗体滴度降低到1:800.该PEG修饰后的CNTFm制备工艺有望为CNTF的临床应用开辟道路.  相似文献   

8.
BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra   总被引:73,自引:0,他引:73  
Brain-derived neurotrophic factor (BDNF), present in minute amounts in the adult central nervous system, is a member of the nerve growth factor (NGF) family, which includes neurotrophin-3 (NT-3). NGF, BDNF and NT-3 all support survival of subpopulations of neural crest-derived sensory neurons; most sympathetic neurons are responsive to NGF, but not to BDNF; NT-3 and BDNF, but not NGF, promote survival of sensory neurons of the nodose ganglion. BDNF, but not NGF, supports the survival of cultured retinal ganglion cells but both NGF and BDNF promote the survival of septal cholinergic neurons in vitro. However, knowledge of their precise physiological role in development and maintenance of the nervous system neurons is still limited. The BDNF gene is expressed in many regions of the adult CNS, including the striatum. A protein partially purified from bovine striatum, a target of nigral dopaminergic neurons, with characteristics apparently similar to those of BDNF, can enhance the survival of dopaminergic neurons in mesencephalic cultures. BDNF seems to be a trophic factor for mesencephalic dopaminergic neurons, increasing their survival, including that of neuronal cells which degenerate in Parkinson's disease. Here we report the effects of BDNF on the survival of dopaminergic neurons of the developing substantia nigra.  相似文献   

9.
Q Yan  J Elliott  W D Snider 《Nature》1992,360(6406):753-755
Current ideas about the dependence of neurons on target-derived growth factors were formulated on the basis of experiments involving neurons with projections to the periphery. Nerve growth factor (NGF) and recently identified members of the NGF family of neuronal growth factors, known as neurotrophins, are thought to regulate survival of sympathetic and certain populations of sensory ganglion cells during development. Far less is known about factors that regulate the survival of spinal and cranial motor neurons, which also project to peripheral targets. NGF has not been shown to influence motor neuron survival, and whether the newly identified neurotrophins promote motor neuron survival is unknown. We show here that brain-derived neurotrophic factor (BDNF) is retrogradely transported by motor neurons in neonatal rats and that local application of BDNF to transected sciatic nerve prevents the massive death of motor neurons that normally follows axotomy in the neonatal period. These results show that BDNF has survival-promoting effects on motor neurons in vivo and suggest that BDNF may influence motor neuron survival during development.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, is a polypeptidic factor initially regarded to be responsible for neuron proliferation, differentiation and survival, through its uptake at nerve terminals and retrograde transport to the cell body. A more diverse role for BDNF has emerged progressively from observations showing that it is also transported anterogradely, is released on neuron depolarization, and triggers rapid intracellular signals and action potentials in central neurons. Here we report that BDNF elicits long-term neuronal adaptations by controlling the responsiveness of its target neurons to the important neurotransmitter, dopamine. Using lesions and gene-targeted mice lacking BDNF, we show that BDNF from dopamine neurons is responsible for inducing normal expression of the dopamine D3 receptor in nucleus accumbens both during development and in adulthood. BDNF from corticostriatal neurons also induces behavioural sensitization, by triggering overexpression of the D3 receptor in striatum of hemiparkinsonian rats. Our results suggest that BDNF may be an important determinant of pathophysiological conditions such as drug addiction, schizophrenia or Parkinson's disease, in which D3 receptor expression is abnormal.  相似文献   

11.
Stress is one of the leading contributing factors for psychosomatic diseases of modern society. Prolonged or strong stress may cause more release of glutamic acid (Glu) transmitter from hippocampal neurons. As most hippocampal neurons are glutaminergic ne…  相似文献   

12.
N-CoR controls differentiation of neural stem cells into astrocytes   总被引:36,自引:0,他引:36  
Hermanson O  Jepsen K  Rosenfeld MG 《Nature》2002,419(6910):934-939
  相似文献   

13.
In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.  相似文献   

14.
Li Y  Jia YC  Cui K  Li N  Zheng ZY  Wang YZ  Yuan XB 《Nature》2005,434(7035):894-898
Brain-derived neurotrophic factor (BDNF) is known to promote neuronal survival and differentiation and to guide axon extension both in vitro and in vivo. The BDNF-induced chemo-attraction of axonal growth cones requires Ca2+ signalling, but how Ca2+ is regulated by BDNF at the growth cone remains largely unclear. Extracellular application of BDNF triggers membrane currents resembling those through TRPC (transient receptor potential canonical) channels in rat pontine neurons and in Xenopus spinal neurons. Here, we report that in cultured cerebellar granule cells, TRPC channels contribute to the BDNF-induced elevation of Ca2+ at the growth cone and are required for BDNF-induced chemo-attractive turning. Several members of the TRPC family are highly expressed in these neurons, and both Ca2+ elevation and growth-cone turning induced by BDNF are abolished by pharmacological inhibition of TRPC channels, overexpression of a dominant-negative form of TRPC3 or TRPC6, or downregulation of TRPC3 expression via short interfering RNA. Thus, TRPC channel activity is essential for nerve-growth-cone guidance by BDNF.  相似文献   

15.
I A Hendry  C E Hill 《Nature》1980,287(5783):647-649
Neurones depend on contact with their target tissues for survival and subsequent development. The protein, nerve growth factor (NGF), can be selectively taken up by sympathetic nerve terminals and reaches the neuronal perikaryon by a process of retrograde intra-axonal transport, suggesting that its role in vivo is to act as a target tissue-derived trophic factor. The development of the neurones of the chick ciliary ganglion requires the presence of structures derived from the optic cup. Several studies in vitro have shown that media conditioned by non-neuronal cells contain factors that result in the survival of neurones from ciliary ganglia. In particular, chick embryo iris, ciliary body and choroid contained large amounts of these factors indicating the presence of a target tissue-derived trophic factor for the cholinergic ciliary ganglion. This study demonstrates that neurones of the ciliary ganglion accumulate, by retrograde intra-axonal transport, proteins synthesized and released by optic tissues in culture.  相似文献   

16.
17.
The action of ciliary neurotrophic factor (CNTF) on intercellular free Ca2+ concentrations [Ca2+]i induced by glutamate (Glu) in primary cultured hippocampal neurons were detected with Fura2/AM, a Ca2+-sensitive fluorophore, and the morphological influence of G-protein on it was objected. Glu could induce rapid increase of [Ca2+]i in hippocampal neurons. CNTF had no significant action on [Ca2+]i in resting hippocampal neurons. However, after incubation of CNTF for 5 min, the increase of [Ca2+]i in hippocampal neurons rapidly induced by Glu was inhibited. Pretussis toxin (PTX)-sensitive G protein could block the action. These results indicate that a new non-genomic rapid sideway might exist in the upper stream of CNTF signal transduction pathway, which was related to Ca2+ signal transduction. Keywords:  相似文献   

18.
Brain-derived neurotrophic factor prevents neuronal death in vivo   总被引:32,自引:0,他引:32  
M M Hofer  Y A Barde 《Nature》1988,331(6153):261-262
Developing vertebrate neurons are thought to depend for their survival on specific neurotrophic proteins present in their target fields. The limited availability of these proteins does not allow the survival of all neurons initially innervating a target, resulting in the widely observed phenomenon of naturally occurring neuronal death. Although a variety of proteins have been reported to promote the survival of neurons in tissue culture, the demonstration that these proteins increase neuronal numbers and/or decrease neuronal death in vivo has only been possible with nerve growth factor (NGF). The generalization of the concept that neurotrophic proteins regulate neuronal survival during normal development critically depends on the demonstration that the survival of neurons in vivo can be increased by the administration of a neurotrophic protein different from NGF. We report here that this is the case with brain-derived neurotrophic factor, a protein of extremely low abundance purified from the central nervous system.  相似文献   

19.
Activin is a nerve cell survival molecule   总被引:22,自引:0,他引:22  
The structures of five neurotrophic molecules have so far been published. Nerve growth factor, fibroblast growth factor and purpurin, have been identified as nerve-cell survival molecules. More recently, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor have been cloned and sequenced. As all these proteins stimulate the survival of ciliary or sensory neurons, a new cell survival assay is required if novel neurotrophic molecules are to be discovered. P19 teratoma cells differentiate to nerve-like cells in the presence of 5 x 10(-7) M retinoic acid (RA). But when P19 cells are plated in N2 synthetic medium without being exposed to RA, they die within 48 h. In an attempt to identify a molecule(s) that can substitute for RA in promoting P19 survival, we assayed serum-free growth-conditioned media for their ability to promote P19 survival. One cell line from the rat eye secreted a molecule that promoted the survival of P19 cells and some types of nerve cell. We identified this molecule as activin, better known for its role in hormone secretion.  相似文献   

20.
Ciliary neurotrophic factor (CNTF) has pleiotropic actions on many neuronal populations as well as on glia. Signal transduction by CNTF requires that it bind first to CNTF-R, permitting the recruitment of gpl30 and LIF-R, forming a tripartite receptor complex. Ceils that only express gpl30 and LIF-R, but not CNTF-R are refractory to stimulation by CNTF. On many target ceils CNTF only acts in the presence of its specific agonistic soluble receptors. We engineered a soluble fusion protein by linking the COOH-terminus of sCNTF-R to the NH2-terminus of CNTF. Recombinant CNTF/sCNTF-R fusion protein (Hyper-CNTF) was sac-cessfully expressed in COS-7 cells. The apparent molecular mass of the Hyper-CNTF protein was estimated from western blots to be 75 kDa. Proliferation assays of tmnsfected BAF/3 cells in response to CNTF and Hy-per-CNTF were used to verify the activity of the cytokines. The proliferative results confirmed that CNTF required homodimerization of the gpl30, CNTF-R and LIF-R receptor subunlt whereas Hyper-CNTF required heterodimerization of the gpl30 and LIF-R receptor subunit. We concluded that the fusion protein Hyper-CNTF had superagonistic activity on target cells expressing gpl30 and LIF-R, but lacking membrane-beund CNTF-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号