首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
聚苯胺的掺杂及其导电性能研究   总被引:5,自引:0,他引:5  
利用对甲基苯磺酸(TSA)和磺基水杨酸(SSA)对聚苯胺(PAn)进行了掺杂,研究了在掺杂过程中浓度、温度及时间对聚苯胺电导率的影响,并对掺杂态PAn在空气中电导率与温度的关系进行了研究,结果表明TSA和SSA掺杂的PAn在研究的温度范围内电导率均随温度的提高而增加。  相似文献   

2.
由于易于合成,导电率高和温度与环境稳定性等优点,聚苯胺作为导电高分子已成为研究热点。本文在介绍掺杂聚苯胺的导电机理后,重点分析比较了不同酸掺杂聚苯胺的导电性能。其中无机酸掺杂后的聚苯胺导电率提高显著,有机酸掺杂中常用来改善其溶解性。  相似文献   

3.
磷酸掺杂对聚苯胺电导率及微观结构的影响   总被引:5,自引:0,他引:5  
对磷酸掺杂的聚苯胺进行了电导率测试,并从微观结构上对这种变化进行探讨.结果表明:随着掺杂剂酸度的增加,大块状的聚苯胺消失,生成了结构更精细、平均粒径更小的聚苯胺,并且在整个微观结构上形成了聚苯胺隧道网化.掺杂有利于导电通道的形成,从而可以显著提高聚苯胺的导电性.  相似文献   

4.
聚苯胺是目前研究导电高分子材料领域的热点之一。综述了聚苯胺的研究进展,主要介绍了聚苯胺的合成及其应用前景。  相似文献   

5.
聚苯胺热电性能研究   总被引:3,自引:0,他引:3  
通过测定一系列不同质子酸掺杂的聚苯胺在不同温度下的电导率、Seebeck系数和热导率值,讨论了不同的掺杂酸和温度对电导率、Seebeck系数、热导率的影响.研究结果表明,聚苯胺有较小的热导率,且其与各种结构因素几乎无关;用有机酸进行二次掺杂的聚苯胺电导率和Seebeck系数均有所提高;温度升高电导率增加而Seebeck系数下降,但更高温度下会发生聚苯胺的脱掺杂使电导率下降而Seebeck系数增加.如能通过结构设计,改变制备条件合成出更高电导率和Seebeck系数聚苯胺,则其有可能成为性能良好的热电材料.  相似文献   

6.
不同酸掺杂对聚苯胺导电性能的影响   总被引:1,自引:0,他引:1  
采用元素分析,X射线光电子谱(XPS),以及直流电导率σdc(T)与温度关系等方法对三种聚苯胺PANI-HCl,PANI-H2SO4和PANI-H3PO4进行了研究,在Cl(2p)谱中,可以分辨四个二重态的自旋轨道裂分偶极子Cl(2p1/2)和Cl(2p2/2)S(2p)-core-level谱显示了二重态自旋轨道的裂分偶极子S(2p1/2)和S(2p3/2),而P(2p)-core-level,  相似文献   

7.
采用具有一维线状结构的导电高分子聚苯胺为原料进行高温处理,制备成导电碳材料,并将其做为二次锂电池的工作电极,组装成电池,进行电化学测试,结果表明:此方法制备的硕材料具有较高的充放电容量和较好的以放电可逆性。  相似文献   

8.
掺杂对导电聚苯胺红外反射性能影响的研究   总被引:3,自引:0,他引:3  
描述了带基片聚苯胺膜的光学性能测试结果,讨论了D-樟脑-10-磺酸的掺杂对聚苯胺红外反射性能的影响及其原理。  相似文献   

9.
导电聚合物聚苯胺的研究进展   总被引:2,自引:0,他引:2  
聚苯胺是一种典型的导电聚合物,因其具有多样化的结构,较高的电导率,独特的掺杂机制,优异的物理性能,良好的环境稳定性,且原料廉价易得,合成方法简便等优点,而成为最具有应用前景的导电高分子材料之一。较合面地介绍了聚苯胺(PAn)的合成方法、性质及其应用。  相似文献   

10.
研究了以二氧化锰为氧化荆,苯胺(An)化学氧化聚合的新型反应.探讨了氧化荆的用量、反应体系酸度、反应温度等条件对聚苯胺(PAn)的产率和电导率的影响.在2.7mol/L的盐酸介质中二氧化锰与苯胺摩尔比为0.7的条件下室温氧化聚合4h,可得到电导率为12.5S/cm的聚苯胺,产率为73%.对产物聚苯胺的结构用红外光谱进行了表征.  相似文献   

11.
导电高分子材料   总被引:1,自引:0,他引:1  
介绍了新型导电高分子材料的分类、性能、导电机理,对提高导电高分子材料的导电性及力学性能的途径、应用以及发展前景作了探讨。  相似文献   

12.
导电高分子材料聚苯胺的研究进展   总被引:33,自引:0,他引:33       下载免费PDF全文
结合导电高分子材料聚苯胺目前研究的现状,综述了聚苯胺的结构、特性,聚苯胺的电化学合成法及化学合成法的影响因素及最佳条件,聚苯胺的掺杂机制、无机酸掺杂和有机酸掺杂、二次掺杂,提高聚苯胺的溶解性和可加工性的方法以及聚苯胺的广泛用途。指出了聚苯胺的发展方向和发展前景。  相似文献   

13.
采用量子化学半经验CNDO/2方法,以聚烷基磺酸盐吡咯为例,对自掺杂导电高分子中取代基在掺杂导电机理中的贡献进行考察,指出的不同烷基链长度和磺酸基团引起主链电荷分布变化的规律,为实验研究提供必要的信息。  相似文献   

14.
导电聚合物是20世纪70年代发展起来的一个研究领域,因其诱人的应用前景受到广泛重视。导电聚合物材料与对应的无机材料相比,具有成膜性好等优点,但也存在稳定性差等缺陷。如何进行结构设计克服现有的缺点、实现导电聚合物的大规模应用是当前导电聚合物界努力的方向。导电聚合物当前的研究热点是设计和合成结构高度稳定、高荧光量子效率和高电荷载流子迁移率的共轭聚合物序的导电聚合。  相似文献   

15.
聚苯胺/高岭土导电复合物的制备与表征   总被引:3,自引:0,他引:3  
采用原位聚合法制备导电的聚苯胺(PAn)/高岭土复合物,当苯胺/高岭土投料质量比为15/100时,复合物的电导率达0.92S/cm,考察了制备工艺和原料配比对产物导电性能的影响,对复合物的导电性,密度,SEM和表面接触角的研究表明,反应体系中高岭土的存在,一方面阻碍了部分单体的聚合反应,另一方面由于苯胺在其表面的吸附和聚合,使得复合物在PAn含量较低时呈现较高的电导率,XRD的研究说明,单体尚未进入高岭土的层状结构内。  相似文献   

16.
以十二烷基苯磺酸(DBSA)/HCl混酸为掺杂剂,过硫酸胺(APS)为引发剂,采用原位聚合法制备了聚苯胺/掺锑二氧化锡(ATO)导电复合材料.探讨了ATO用量对导电复合材料电导率的影响,在n(ANI):n(APS):n (DBSA)=1:1:0.7,m(ATO):m(ANI)=0.1:1时,复合材料室温25℃的电导率最高可达8.35 S·cm-1.通过FT-IR,XRD,SEM对其进行了表征.结果表明,ANI优先在ATO粒子表面聚合,形成聚苯胺包覆ATO的导电复合材料.  相似文献   

17.
分析了基布材料、织物结构、导电物质、制备工艺等对织物导电性能及聚苯胺沉积状态的影响;综述了提高聚苯胺导电织物导电性能的方法,如通过酸掺杂、加入金属离子等增加织物表面的导电因子,通过磁场、超声场等外场提高聚苯胺的分布均匀度,通过改变加工工艺、基体材料改性等提高聚苯胺在植物表面分布的均匀度和连续性;指出采用原位聚合法制备聚苯胺是最有希望实现导电织物市场化的方法,但仍然存在着亟需解决的问题,有待进一步研究.  相似文献   

18.
Conventional ion-conducting polymer consists of electrolyte salt and polymer matrix, so-called salt-inpolymer. It possesses lower conductivity because the migration of ions depends on the motion of polymer segmental. To increase the ionic conductivity, a kind of gel polymer film (GPF) was prepared by in situ polymerization of methyl methacrylate (MMA) monomer in room-temperature ionic liquid (RTIL), 1-butyl-3- methylimidazolium hexafluorophosphate (BMIPF6). Due to immeasurably low vapor pressure, high ionic conductivity, and greater thermal and electrochemical stability, BMIPF6 is suitable electrolyte salts for ion-conducting polymer.  相似文献   

19.
采用涂膜法制备了以碳纳米管(CNTS)、乙炔黑和石墨粉为导电填料的导电胶,研究了它们的电学性能、力学性能和粘结性能.结果显示,聚偏氟乙烯(PVDF)/CNTS导电胶有较好的综合性能.  相似文献   

20.
聚酞菁锗氧烷[Ge(Pc)O]n由酞菁锗二醇的单晶体在 10-1Pa的真空度和 440℃的温度下于固态加热10小时缩聚而成。用透射电子显微镜摄得了该聚合物单晶体中包含分链在内的(100)晶面的条纹像。图像清楚地表明在该种聚合物晶体中,分子链有两种不同的配置方向:平行于板条状晶片的长边或与之成60°的夹角。在它的高分辨电子显微像中,不但可以看到明显的镶嵌块结构,而且可以清楚地看到刃位错、空位、非周期性结构与 Kink等晶体缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号