首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电晕放电等离子体增强化学气相沉积合成碳纳米管阵列   总被引:4,自引:0,他引:4  
发展了具有常压、低温特点的电晕放电等离子体增强化学气相沉积合成碳纳米管阵列的技术路线. 以甲烷和氢气为原料, 在含钴多孔阳极氧化铝模板中合成了碳纳米管阵列. 扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量弥散X射线谱(EDS)和拉曼光谱(Raman)分析表明, 该阵列由直径约40 nm的碳纳米管构成, 长度大于4 mm. 碳纳米管主要限制生长在模板孔道中.  相似文献   

2.
李晓宁  杨修春  韩珊珊  陆伟  侯军伟  刘艳 《科学通报》2010,55(35):3422-3425
采用双室法,在多孔阳极氧化铝(AAO)模板中制备出高密度、高纵横比的Ag2S纳米颗粒纳米线.用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)及能谱仪(EDS)对Ag2S纳米线阵列的形貌、组成及晶体结构进行了表征.结果显示Ag2S纳米线为单斜结构,直径在165~270nm之间,纳米线由直径为40~60nm的球形颗粒构成.化学反应、成核和生长是Ag2S纳米颗粒纳米线的生长机理.  相似文献   

3.
报道一种基于有序多孔氧化铝模板纳米掩膜法制备的金属铁和锌纳米点阵列作为催化剂阵列, 通过气相催化生长方法在硅基体上生长氧化锌纳米柱. 初步的研究显示, 该方法制备的氧化锌纳米柱尺寸均一, 取向一致, 呈现高度有序的阵列分布, 纳米柱的直径匹配于所应用的多孔氧化铝掩模板的孔径.  相似文献   

4.
用多孔氧化铝模板制备高度取向碳纳米管阵列膜的研究   总被引:16,自引:0,他引:16  
用多孔氧化铝(AAO)模板(孔径约 250 nm,孔密度约 5.3×10~8cm~(-2),厚度约 60μm)进行化学气相沉积(CVD),成功地制备出大面积高度取向的碳纳米管有序阵列膜.用透射电子显微镜(TEM)和扫描电子显微镜(SEM)观察了阵列膜的表面形貌和碳纳米管的结构.发现碳纳米管的长度和管径取决于AAO模板的厚度和孔径,碳纳米管的生长特性与模板的结构、催化剂颗粒、反应气体热解温度、流量比例以及沉积时间等因素有关.该方法工艺简便,可使碳纳米管的结构均匀一致,排列分立有序,形成一种有用的碳纳米管自组装有序阵列复合结构,且成本低,能实现大面积生长,非常利于碳纳米管基础与应用研究.  相似文献   

5.
TiO2包覆阵列碳纳米管的制备与表征   总被引:2,自引:2,他引:2  
于洪涛  赵慧敏  全燮  陈硕 《科学通报》2006,51(15):1851-1853
用常压化学气相沉积(APCVD)技术, 在同一反应器中, 不同温度下连续反应, 依次进行碳纳米管阵列的制备、空气氧化净化和二氧化钛纳米颗粒的包覆, 得到了外壁包覆二氧化钛纳米颗粒的阵列碳纳米管. 用扫描电子显微镜、X射线能量色散谱、X射线衍射仪、透射电子显微镜对制得的样品进行表征. 结果表明, 碳纳米管外壁包覆的纳米二氧化钛平均粒径11.5 nm.  相似文献   

6.
张锦 《科学通报》2022,(14):1555-1557
<正>碳元素在自然界中分布广泛,“有机碳”构成有机物和生命体的分子骨架,“无机碳”可形成立方结构的金刚石和六方结构的石墨.以石墨六元环为基本单元,还可组成多种低维碳纳米材料,如零维富勒烯、一维碳纳米管和二维石墨烯、石墨炔等.碳纳米管是日本科学家饭岛澄男于1991年在透射电子显微镜(TEM)下发现的[1].碳纳米管的直径为纳米尺度,  相似文献   

7.
用模板法制备取向Si纳米线阵列   总被引:12,自引:0,他引:12  
李梦轲  王成伟  力虎林 《科学通报》2001,46(14):1172-1175
用化学气相沉积(CVD)技术,在阳极氧化铝模板的有序微孔内,制备了高度取向的多晶Si纳米线阵列。用原子力显微镜(AFM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)分别观察了模板及Si纳米线阵列的表面,断面形貌及单根Si纳米线的显微结构,用X射线衍射仪(XRD)分析了Si纳米线阵列的晶体结构。此方法制备出的Si纳米线阵列生长方向高度有序,直径和长度易于控制、较少发生周期性不稳定生长而产生的弯曲和缠绕现象,相对其他方法具有工艺简单、成本低、可控性强、易实现大面积生长等优点。  相似文献   

8.
张强  黄佳琦  魏飞  徐光辉  王垚  骞伟中  王德峥 《科学通报》2007,52(19):2239-2245
采用廉价的混和工业原料石油液化气作为碳源, 通过浮游过程在陶瓷球表面实现了碳纳米管阵列的大批量制备. 陶瓷球提供了的大比表面积和较好的流动性, 使碳纳米管阵列的连续批量生产有望实现. 在陶瓷球表面获得的碳纳米管阵列取向好, 直径可控, 原生阵列纯度高达97.5%. 若进一步降低反应温度, 可以制备得到直径约为13 nm的小直径碳纳米管阵列. 因此, 通过直接采用工业燃料作为碳源、球表面作为生长基板, 可以低成本大批量制备碳纳米管阵列.  相似文献   

9.
在没有使用表面活性剂的情况下,采用简单的湿化学方法成功制备出八面体Sb2O3纳米晶.用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、傅立叶变换红外光谱(FT-IR)、拉曼光谱(Raman)以及光致发光光谱(PL)对所制备的八面体Sb2O3的物相、微结构和光学特性进行了表征.探讨了八面体产物形成的生长机理.与块体Sb2O3相比,样品的PL光谱呈现出蓝移.  相似文献   

10.
在两步法制备多孔阳极氧化铝模板过程中, 观察到氧化铝纳米线的生长. 这种纳米线生长过程不同于通常的化学腐蚀生成过程, 电场和应力的共同作用是导致氧化铝纳米线形成的主要原因, 同时抛光后铝箔表面的纳米压痕也是导致纳米线形成的重要因素.  相似文献   

11.
铁酸铋纳米管阵列与Y型铁酸铋纳米管的合成及表征   总被引:2,自引:0,他引:2  
利用氧化铝(AAO, anodized aluminum oxide)模板技术结合溶胶-凝胶法合成了多铁BiFeO3(BFO)纳米管(直径约100 nm, 长度约50 mm)阵列. 并用扫描电子显微镜(SEM, scanning electron microscopy)、透射电子显微镜(TEM, transmission electron microscopy)和电子能谱仪(XPS, X-ray photoelectron spectrometer)对其形貌结构和化学组成进行了表征, 结果显示合成的BFO纳米管是多晶结构. 同时, 一种新颖的Y型BFO纳米管被成功制备和表征.  相似文献   

12.
以化学气相沉积(CVD)法生长的石墨烯作为基体,采用原位复合方法制备出三维石墨烯/碳纳米管纳米复合材料.使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的微观形貌和结构进行表征,并运用循环伏安、交流阻抗等技术对纳米复合材料的超级电容性能进行研究.实验结果表明,石墨烯/碳纳米管纳米复合材料作为超级电容器电极材料,在1.5 mol/L Li_2SO_4体系中的最大比电容为289.8 F/g,经2000次循环后,其容量保持92%,表现出优异的比容量和循环稳定性.  相似文献   

13.
射频等离子法PAN基预氧化纤维微观结构表征   总被引:2,自引:0,他引:2  
徐海萍  孙彦平  陈新谋 《科学通报》2005,50(23):2681-2685
采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、扫描隧道显微镜(STM)、X射线衍射(XRD)等技术, 在微米、纳米及原子尺度下对射频等离子法制备的预氧化纤维微观结构进行了表征. 首先将聚丙烯腈(PAN)原丝样品在富氧溶剂中浸泡并用射频电场极化, 然后在射频氧等离子体环境中进行预氧化. 与未浸泡处理且采用常规电炉法制备的预氧化纤维比较, 微米尺度下的SEM形貌显示, 这种预氧化纤维表面微纤间的皱褶较浅且较整洁圆滑, 径向结构的不均匀性得到改善; XRD计算结果表明, 石墨化度和微晶尺寸有所增大, 层间距则有所减小. 同时, 在纳米尺度下的HRTEM图像中观察到等离子法制备的预氧化纤维(002)晶面的晶格条纹和晶格边缘; 在纳米及原子尺度下的STM图像中探测到组成微纤的超微纤丝具有相互缠结、呈轴向伸展的左螺旋结构, 其表面原子具有取向排列趋势.结果表明, 该等离子法可使原丝内外氧化趋于一致, 有利于改善预氧化纤维的径向结构差异.  相似文献   

14.
以碳纳米管与水溶液界面的阳离子表面活性剂十八烷基三甲基溴化铵(ODTMA)超分子自组装结构为模板, 在水溶液体系成功地合成了以碳纳米管为核, 以介孔硅基材料为壳的碳纳米管/有序介孔氧化硅核壳纳米线. 用透射电子显微镜、X射线衍射以及低温N2吸/脱附对样品进行了表征. 结果表明, 核壳纳米线具有规整的p6mm有序孔道结构、高比表面和集中的孔径分布. 碳纳米管/有序介孔氧化硅核壳纳米线的形貌可通过溶液的pH进行控制. 此外, 碳纳米管/有序介孔氧化硅核壳纳米线在水和乙醇等极性溶剂中具有良好的分散性能, 有望应用于生物传感器、纳米探针以及储能等领域.  相似文献   

15.
在含有乙醇的氢氟酸溶液中,用阳极氧化法制备了高度取向的TiO2纳米管阵列,并用扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、紫外-可见漫反射(DRS)和荧光光谱(PL)对样品进行表征,探讨了TiO2纳米管阵列的形成机理.结果表明,制备的TiO2纳米管阵列垂直生长于钛基底表面,分布均匀,管径约为90nm,管壁厚约20nm,管长约400~500nm,并且表现出更大的禁带宽度和良好的光致发光特性.此外,使用该纳米管对对氯苯酚的光电催化降解实验表明,光电催化效率明显高于光催化和电化学过程之和,表现出一定的光电协同作用;施加的阳极偏压也存在一个最佳值.  相似文献   

16.
王国志  张磊  邓积光  戴洪兴  何洪  訾学红 《科学通报》2006,51(18):2109-2113
分别采用十六烷基三甲基溴化铵(CTAB)、CTAB-EG(乙二醇)模板法和CTAB-EG-NaCl法(即以一定量的NaCl填充由CTAB-EG模板法所得前驱体的孔道)制备出Ce0.6Zr0.35Y0.05O2(CZY)固溶体纳米粒子, 并利用X射线衍射、高分辨扫描电子显微镜、透射电子显微镜、选区电子衍射及N2吸附-脱附等技术表征了这些材料的物理性质. 结果表明, 3种方法制备的Ce0.6Zr0.35Y0.05O2样品都具有虫孔状介孔立方晶相结构, 孔径分布窄(平均孔径5.3~7.1 nm), 比表面积高(95~119 m2·g&#8722;1), 孔容大(0.16~0.18 cm3·g&#8722;1). NaCl的引入有利于在较高温度下合成多孔固体纳米材料时保持孔道结构.  相似文献   

17.
本研究通过化学自组装和原位热解成功构建了锚定超细Fe3O4纳米颗粒的磁功能化石墨烯气凝胶复合材料.分别采用X射线衍射(XRD)和X射线光电子能谱(XPS)表征复合材料的晶体结构及元素组成;采用红外及拉曼光谱分析表征其化学结构、石墨化程度和结构缺陷;通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的形貌及...  相似文献   

18.
3种新形纳米氧化钛阵列体系的模板组装与表征   总被引:2,自引:0,他引:2  
田玉明  徐明霞  刘祥志  戈磊 《科学通报》2006,51(10):1229-1233
采用二次阳极氧化工艺制备了高度有序的多孔氧化铝模板, 通过模板法与溶胶-电泳沉积和溶胶-凝胶法结合的模板组装技术, 合成了3种具有高比表面积的纳米TiO2阵列体系. 采用溶胶-凝胶模板法合成了直径50 nm, 长20 μm, 间距100 nm的棒状TiO2纳米线阵列体系; 并通过控制模板孔深, 合成了TiO2纳米点周期性调制薄膜, 薄膜表面的纳米点直径75 nm, 点间距100 nm, 薄膜背面为致密结构; 采用溶胶-电泳模板合成方法制备了形似糖葫芦的TiO2纳米线阵列体系, 纳米线直径75 nm, 长为20 μm, 每根线都具有周期性的凹凸结构, 形似糖葫芦. 3种纳米阵列体系具有更大的比表面积, 可以预见这种表面调制的阵列体系, 将表现出不同于一般意义的薄膜及纳米点、纳米线的新物性和新效应.  相似文献   

19.
磁控溅射法制备氧化铜纳米线阵列薄膜及其气敏性质   总被引:2,自引:0,他引:2  
通过磁控溅射法在掺氟二氧化锡导电玻璃(FTO)衬底上溅射金属铜薄膜,所制备的Cu薄膜在管式炉中退火氧化生长得到CuO纳米线阵列薄膜.用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)对其形貌和结构进行了表征,并研究了这种通过磁控溅射得到的CuO纳米线阵列薄膜对CO和H2S的气敏性质.研究结果表明,CuO纳米线阵列薄膜在250℃时对CO气体具有最强的气敏响应,并且当CO浓度增大时其气敏响应明显增强.而对于H2S气体,在常温下CuO纳米线阵列薄膜能够对低浓度的H2S气体响应,说明这种CuO纳米线阵列薄膜可以在常温、低浓度下探测H2S气体;而当测试温度升高时,其电阻值在H2S气体氛围中迅速减小.我们对这种异常的电阻变化现象进行了解释.  相似文献   

20.
海底天然气水合物是十分重要的能源矿产, 目前主要是根据似海底反射面(BSR)等地 球物理方法和海底地球化学异常示踪其存在. 此外, 与天然气水合物有关的自生矿物如碳酸盐、硫酸盐和硫化物等矿物也是重要的示踪体系. 本文利用扫描电子显微镜(SEM)和高分辨率透射电子显微镜(HRTEM), 对来自南海台西南盆地沉积物中的自生管状黄铁矿进行了系统的观测, 发现它们主要由草莓状黄铁矿组成, 且在草莓状黄铁矿中首次发现了纳米级的低结晶度石墨碳, 它们主要呈现出似纳米碳管和纳米锥形状, 而且与黄铁矿密切共生, 显示它们可能主要形成于含C过饱和C–H–O流体的沉淀. 黄铁矿在CH4转变为原子C的过程中起催化作用. 自生管状黄铁矿中新发现的纳米级石墨碳, 显示其沉积时沉积岩围岩中存在CH4过饱和流体, 因此可作为天然气水合物又一重要示踪矿物. 此外, 低温环境中纳米石墨碳的发现对石墨的实验室合成和工业生产等有借鉴意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号