首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与普通混凝土腹板箱梁相比,波形钢腹板箱梁由于其结构的特殊性,截面抗扭刚度较小,由扭转产生的翘曲应力较大.为深入研究波形钢腹板箱梁扭转产生的翘曲应力,文中在箱梁理论的基础上,根据波形钢腹板箱梁的力学特性,将波形钢腹板作为正交异性板,采用乌氏第二理论,推导出波形钢腹板箱梁的扭转微分方程,并采用初参数法求得约束扭转正应力和约束扭转剪应力.将计算结果与已有的试验结果相比较,结果表明文中分析的精确度较高.  相似文献   

2.
赵富康  蔺鹏臻 《科学技术与工程》2020,20(25):10472-10479
为分析高速铁路跨度40 m双线混凝土简支箱梁桥约束扭转效应,采用薄壁箱梁约束扭转的理论解析法,建立列车活载作用下的约束扭转微分方程,结合ANSYS软件的精细数值模拟结果,对比研究了箱梁在约束扭转下的扭转角、翘曲双力矩、约束扭矩等力学参数的变化规律,研究了腹板倾角、高宽比和悬臂板宽度等计算参数对约束扭转应力的影响规律。结果表明:扭转角在跨中处达到最大,翘曲双力矩在1/4跨、1/2跨处峰值基本一致,约束扭矩在跨中处达到最大值。板壳有限元解与解析解的计算结果存在一定差异,且翘曲正应力在腹板和底板相交处最大相差为66.6%,有限元解更为精确。简支梁跨中截面悬臂端的翘曲效应最明显,翘曲比例系数可达9.16%。翘曲应力总体随高宽比、腹板倾角的增大而减小。  相似文献   

3.
为深入研究预应力效应对波形钢腹板曲线箱梁翘曲应力的影响,将预应力等效荷载应用到波形钢腹板曲线箱梁的计算中。通过乌曼斯基第二翘曲理论,根据波形钢腹板曲线箱梁的力学特性,建立了考虑预应力效应的波形钢腹板曲线箱梁的扭转微分方程,并采用初参数法求得约束扭转应力。研究结果表明:在非对称布置预应力钢束的情况下,将考虑预应力效应与不考虑预应力效应所引起的约束扭转应力进行对比,得到由预应力效应所引起的约束扭转正应力的比例达到33%,由预应力效应所引起的约束扭转剪应力的比例达到14.28%,由此可见在非对称布筋的情况下预应力效应产生的扭转效应不能忽视。将本研究的计算结果与有限元计算结果进行比较,吻合较好,表明本研究计算方法精度较高,可进一步完善波形钢腹板曲线箱梁桥的计算理论。  相似文献   

4.
为了更加合理地分析波形钢腹板组合箱梁的约束扭转效应,考虑了顶底板对波形钢腹板的约束作用,引入波形钢腹板共同抗弯区的概念,同时考虑波形钢腹板的手风琴效应,提出一种分析约束扭转效应的解析法.通过引入新的广义扇性坐标分布模式,在乌曼斯基第二理论的基础上推导了约束扭转翘曲应力的计算公式.结合数值算例对比分析了所提方法与传统方法...  相似文献   

5.
为了分析薄壁箱梁在竖向偏载作用下的整体受力性能,考察剪力滞、约束扭转及畸变翘曲应力相对于竖向弯曲应力的放大系数,在充分考虑扭转与畸变耦联影响的基础上,用能量变分法建立了综合反映竖向弯曲变形以及剪力滞、约束扭转、畸变等翘曲变形的控制微分方程.对既有文献中的模型梁及某预应力混凝土简支箱梁在跨中偏载作用下的应力状态进行理论分析.结果表明,按该控制微分方程求得的模型梁应力理论值与实测值吻合良好.跨中截面加载腹板与底板交点处的正应力放大系数达到约1.63,在水平形心轴处腹板的剪应力放大系数达到约2.55.在剪力滞、约束扭转及畸变翘曲应力中,畸变和约束扭转翘曲应力占主导地位,剪力滞翘曲应力占次要地位,但仍不可忽略.  相似文献   

6.
根据乌氏第二理论对波纹钢腹板预应力混凝土箱梁的扭转性能进行了研究,分析了箱梁截面在偏心荷载作用下的约束扭转和畸变特性,建立了空间有限元模型,并对理论分析进行了验证.分析结果表明:在偏心荷载作用下,由约束扭转产生的翘曲正应力为弯曲应力的5.9%,跨中截面钢腹板剪应力为弯曲剪应力的14.8%,由畸变引起的翘曲正应力为弯曲正应力的29%;针对跨径较小的简支梁,畸变产生的翘曲正应力约为约束扭转产生的翘曲正应力的5倍;偏载引起的效应在整体效应中所占的比重较大,在计算过程中不可忽略.  相似文献   

7.
为了得到便利的变截面波形钢腹板组合箱梁的剪应力计算方法,对同时受弯矩、轴力、剪力作用的箱梁微段进行研究。基于静力平衡条件和材料力学正应力计算理论,推导了箱梁微段在弹性阶段的剪应力解析计算式。以受集中力的悬臂梁为例,解析法与ABAQUS的模拟结果基本吻合。波形钢腹板承剪比分析表明:腹板在近悬臂端的承剪比远未达到100%,传统的等截面梁剪应力计算方法在变截面梁上的应用还有改进的空间。通过将底板所受拉力的竖向分力考虑为底板上的剪力,近似求得了腹板剪力,并定义安全因子用以判断所得剪力是否偏安全,经修正后最终得到了合适的简化方法。  相似文献   

8.
为了合理计算薄壁箱梁约束扭转剪应力,基于乌曼斯基第二理论,根据总扭矩平衡条件和翘曲位移连续性条件,导出了薄壁箱梁约束扭转剪应力的2种计算公式,并论证了2种公式的等价性.在公式推导过程中,对箱梁悬臂板进行了考虑.针对2种公式中广义扇性静矩计算的繁琐性,进一步导出了其实用简化计算公式,并举例说明了其具体应用.数值算例表明:有悬臂板的薄壁箱梁发生约束扭转时,全截面最大剪应力出现在腹板内,在悬臂板内也存在较大的剪应力;顶板和底板内的剪应力非均匀分布程度显著,其中部区域内剪应力很小.如果近似按自由扭转理论计算剪应力,求得的腹板剪应力只有实际最大剪应力的69%,严重低估了腹板内的实际剪应力大小,表明不能忽略翘曲约束效应对剪应力的影响.  相似文献   

9.
根据波形钢腹板PC组合箱梁的特性,运用Hamilton原理推导了波形钢腹板PC组合箱梁考虑剪切变形时的扭转振动频率计算公式.以5.2 m波形钢腹板试验梁为对象进行了模态试验,并利用有限元软件ANSYS建立波形钢腹板PC组合箱梁的模型进行模态分析.通过对试验梁模态试验的扭转振动频率的实测值、理论计算值以及有限元分析数据进行对比分析,证明了理论公式推导的正确性,论证了有限元模型的适用性,并通过分析得出剪切变形对波形钢腹板PC组合箱梁的扭转振动性能有较大影响.文中还利用参数分析的方法,分析波形钢腹板厚度以及波折角对该组合箱梁的扭转振动频率的影响,结果表明:随着钢腹板厚度的增加,波形钢腹板PC组合箱梁的扭转振动频率相应增大;随着钢腹板波折角的增大,波形钢腹板PC组合箱梁的扭转振动频率有所减小.  相似文献   

10.
为了求解变截面波形钢腹板组合梁截面的剪力滞效应,研究了剪力滞翘曲位移函数模式,证明了按二次抛物线定义翘曲位移函数具有较高的求解精度。基于最小势能原理,利用变分法,推导了等截面波形钢腹板组合梁截面的翘曲位移函数的计算公式;在此基础上,运用差分法,进一步推导了变截面波形钢腹板组合梁截面的翘曲位移函数、附加弯矩、挠度以及剪力滞系数的递推计算公式。研究结果表明:按二次抛物线形式定义广义纵向位移函数对于变截面波形钢腹板组合梁同样可行;宽跨比是个敏感参数,差分法可用于求解任意荷载、任意边界条件下的变截面波形钢腹板组合梁截面的剪力滞系数。最后利用工程实例实测结果和有限元计算结果加以验证,3种方法所得结果吻合。  相似文献   

11.
为研究单箱双室新型钢底板波形钢腹板组合箱梁的扭转性能,基于乌曼斯基第二理论推导了箱梁的扭转微分方程和应力公式,结合纯扭转试验和有限元模型,检验理论公式的正确性.分析不同因素对箱梁扭转性能的影响,对比新型梁与传统混凝土底板梁的性能变化.结果 表明,同一测点理论值、有限元值与实测值吻合较好,差值大多在30%以内,整体变化规律一致.横隔板和加劲肋的一般布置方式对新型梁的有效抗扭刚度影响较小;当高宽比达到0.4时,截面正应力会产生明显变化.相对于传统梁,新型梁抗扭刚度减小8.58%,截面约束系数减小58.44%;相同扭矩下,新型梁跨中扭转角增大13.6%,最大扭转双力矩减小69.66%,2种箱梁正应力区别明显,剪应力相差较小.  相似文献   

12.
为了更精确地求解波形钢腹板组合箱梁的挠度,通过分析该组合箱梁挠曲剪应力分布特点,结合虚功原理,推导出考虑全截面剪切影响的剪切形式因子.基于能量变分原理,推导出该组合箱梁剪切附加挠度的控制微分方程,并给出一般荷载条件下简支箱梁剪切附加挠度的表达式.数值算例结果表明,考虑剪切变形影响计算的组合箱梁挠度与ANSYS空间有限元计算结果及实测值吻合良好,剪切变形对组合箱梁的挠度影响较大.参数分析结果表明:随着宽高比的增大,采用剪切系数方法计算所得的组合箱梁附加挠度也增大;随着跨高比的增大,波形钢腹板剪切变形产生的附加挠度不断减小,当跨高比大于40时,可忽略腹板剪切变形的影响.  相似文献   

13.
为了揭示梁端约束条件对箱形梁剪力滞效应的影响,选取剪力滞效应引起的附加挠度为广义位移,在箱形梁横截面上引入3个翘曲位移修正系数,运用能量变分法建立了关于附加挠度的控制微分方程及边界条件,导出了均布荷载作用下相应于不同梁端约束条件的箱形梁剪力滞系数和附加挠度解析解.结合数值算例,详细分析了梁端约束条件对剪力滞系数和附加挠度的影响.研究结果表明:该研究计算结果与有限元计算结果吻合良好;梁端约束程度越强,剪力滞系数横、纵向分布曲线越陡峭,剪力滞附加挠度纵向分布曲线越平缓;正、负弯矩区的剪力滞系数纵向分布规律与相应的简支箱梁和悬臂箱梁类似;与简支箱梁相比,一端固定另一端简支的箱梁和两端固定的箱梁跨中截面顶板与腹板交汇处的剪力滞系数分别增大了12.86%和25.63%,跨中截面的剪力滞附加挠度分别减小了13.79%和25.60%.  相似文献   

14.
国内外多箱室的波形钢腹板矮塔斜拉桥已建造较多,但是波形钢与混凝土组合腹板的单箱多室的矮塔斜拉桥还很少见,这种新型的组合箱型截面的剪力滞效应有待深入探讨。目前,设计上分析剪力滞效应的常用分析方法多采用平面梁格模型、单梁模型、实体模型等,这些计算模型在分析剪力滞效应的各项应力指标时缺乏精细化,而空间网格分析模型可弥补这些分析方法的缺陷;因此,本文采用空间网格分析方法来探讨分析矮塔斜拉桥剪力滞效应。首先,详述了剪力滞效应的原理、空间网格分析方法及验证波形钢腹板空间网格分析方法的可行性,然后以一座波形钢与混凝土组合腹板的单箱多室的矮塔斜拉桥为典型案例,通过空间网格模型来分析其剪力滞效应。结果表明:此类箱梁的顶板表现出明显的正剪力滞、底板表现出较小的正剪力滞,混凝土腹板处的正剪力滞效应明显大于波形钢腹板处,各个工况的剪力滞系数表现出一定的变化规律。通过案例分析得出了此类钢混组合结构关键截面的剪力滞系数沿横向和纵向的分布规律,可为同类型工程提供参考。同时也由此验证了空间网格分析方法的有效性和准确性,弥补了常规分析手段的不足,为桥梁的精细化设计开拓新的思路和方向。  相似文献   

15.
为了研究节段预制拼装波形钢腹板连续组合箱梁的抗剪性能,制作两片缩尺试验梁,包括节段拼装变截面波形钢腹板连续箱梁和相同尺寸的整体浇筑变截面波形钢腹板连续箱梁. 通过静力试验和数值分析,得到了节段拼装梁的剪应力分布规律、波形钢腹板承剪比例等. 结果表明:在中跨对称加载作用下,中跨1/4位置处节段拼装梁与整体梁波形钢腹板的剪应力沿梁高方向均匀分布,节段拼装梁的剪应力值要大于整体梁的相应值. 推导出节段拼装变截面波形钢腹板组合箱梁的剪应力计算公式,并考虑施工工艺对剪应力的影响,通过与实测值对比验证公式的准确性. 两片试验梁的波形钢腹板的承剪比受荷载影响较小,保持一个恒定的比例;两片试验梁在中支座位置处的钢腹板承剪比均为50%,并沿着试验梁纵向方向向两侧不断增大;在中跨1/4位置,节段拼装梁钢腹板的承剪比达到85%以上,整体梁的钢腹板在该位置的承剪比在75%左右,两片试验梁在边跨相应位置承剪比相差不大. 将适用于节段拼装混凝土箱梁的AASHTO接缝抗剪强度计算公式乘0.9可用于接缝截面抗剪承载力计算;上述公式值与试验值、有限元结果的误差在5%左右,可以较好地预测钢混组合结构胶接缝的抗剪强度.  相似文献   

16.
针对等截面单箱三室箱梁的空间变形特点,并考虑梁纵向平衡所附加的全截面纵向位移.假设4种不同的箱梁剪力滞翘曲位移模式;基于最小势能原理推导出系统的总势能函数,由变分法得到一组带有边界条件的微分方程,据此推导出不同的剪力滞翘曲函数下的剪力滞系数的分布情况;列举算例并借助有限单元法验证各种翘曲位移函数得到的剪力滞系数.最后将本文解与有限元算出的剪力滞系数比较,分析各种剪力滞翘曲位移模式的适用性;并与不考虑梁纵向平衡所附加的全截面纵向位移算出的剪力滞系数进行比较。  相似文献   

17.
目的确定影响剪力滞系数的主要几何参数,总结计算翼缘有效宽度比的经验公式.方法基于有限元软件Midas/FEA,计算集中(均布)荷载作用下腹板厚度、顶板厚度、荷载类型、宽跨比等因素对大跨度变截面波形钢腹板组合连续箱梁剪力滞效应的影响,找出其中对剪力滞效应有主要影响的几何参数,利用数据回归分析方法研究翼缘有效分布宽度取值问题.结果剪力滞效应受荷载作用类型影响较大.明确宽跨比是影响箱梁剪力滞效应的主要几何参数.结论建立了集中荷载作用下波形钢腹板组合箱梁翼缘有效分布宽度计算的经验公式.  相似文献   

18.
截面形式对波纹钢腹板桥梁动力特性的影响   总被引:1,自引:0,他引:1  
随着对波纹钢腹板新型桥梁研究的深入开展,其动力性能也备受关注.波纹钢腹板桥梁截面形式的不同,对其动力性能有着很大的影响.本文针对常用的单箱双室和双箱双室两种截面形式,分别建立了有限元模型,得到了其自振特性,对其动力特性进行了分析比较.分析结果表明:波纹钢腹板箱梁在正常使用状态下,双箱双室截面的扭转刚度较截面为单箱双室箱梁偏低,整体性较差.本文的研究成果可以为波纹钢腹板桥梁的设计提供参考.  相似文献   

19.
针对目前规范中缺少有关波形钢腹板组合连续梁桥有效翼缘宽度的相关规定,提出一种翼缘有效宽度计算方法,以某大跨度波形钢腹板预应力混凝土组合连续箱梁桥为背景,对其有效翼缘宽度计算进行初步研究,研究结果表明:在自重和集中荷载作用下,跨中混凝上内衬边缘的剪力滞效应显著,翼缘板的有效翼缘宽度系数分别达到0.87和0.7左右,其它部位剪力滞效应不明显;而预应力荷载作用下,波形钢腹板组合连续箱梁的各截面处的剪力滞效应均不明显,可以忽略不计,最后通过有限元计算结果与国内外规范对比发现,波形钢腹板箱梁跨中部分有效翼缘宽度与混凝土箱梁基本一致,设计计算时可参照普通混凝土箱梁;内衬边缘截面的剪力滞效应介于普通混凝土箱梁与钢箱梁之间,其有效翼缘宽度的计算也应介于二者之间。  相似文献   

20.
为了更加客观地反映箱形梁剪力滞翘曲应力分布,借助有限元软件建立箱形梁实体模型,计算并绘制横截面翘曲应力分布图.在此基础上,重新定义了箱形梁各板的翘曲位移模式,同时引入反映翘曲应力自平衡和悬臂板边界约束影响的修正系数.选取剪力滞效应引起的附加挠度为广义位移,应用能量变分法建立了以附加挠度为未知量的控制微分方程及边界条件,并导出了简支箱梁和两跨连续箱梁剪力滞附加挠度和翘曲应力的解析解.通过简支箱梁和连续箱梁算例,结合空间有限元翘曲应力计算结果确定边界约束修正系数可采用1.4.算例表明,本文方法计算结果与有限元数值解吻合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号