首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper charts P.A.M. Dirac's development of his theory of the electron, and its radical picture of empty space as an almost-full plenum. Dirac's Quantum Electrodynamics famously accomplished more than the unification of special relativity and quantum mechanics. It also accounted for the ‘duplexity phenomena’ of spectral line splitting that we now attribute to electron spin. But the extra mathematical terms that allowed for spin were not alone, and this paper charts Dirac's struggle to ignore or account for them as a sea of strange, negative-energy, particles with positive ‘holes’. This work was not done in solitude, but rather in exchanges with Dirac's correspondence network. This social context for Dirac’s work contests his image as a lone genius, and documents a community wrestling with the ontological consequences of their work. Unification, consistency, causality, and community are common factors in explanations in the history of physics. This paper argues on the basis of materials in Dirac's archive that --- in addition --- mathematical beauty was an epistemological factor in the development of the electron and hole theory. In fact, if we believe that Dirac's beautiful mathematics captures something of the world, then there is both an epistemology and an ontology of mathematical beauty.  相似文献   

2.
In this paper, I discuss one form of the idea that spacetime and gravity might ‘emerge’ from quantum theory, i.e. via a holographic duality, and in particular via AdS/CFT duality. I begin by giving a survey of the general notion of duality, as well as its connection to emergence. I then review the AdS/CFT duality and proceed to discuss emergence in this context. We will see that it is difficult to find compelling arguments for the emergence of full quantum gravity from gauge theory via AdS/CFT, i.e. for the boundary theory's being metaphysically more fundamental than the bulk theory.  相似文献   

3.
This work outlines the novel application of the empirical analysis of causation, presented by Kutach, to the study of information theory and its role in physics. The central thesis of this paper is that causation and information are identical functional tools for distinguishing controllable correlations, and that this leads to a consistent view, not only of information theory, but also of statistical physics and quantum information. This approach comes without the metaphysical baggage of declaring information a fundamental ingredient in physical reality and exorcises many of the otherwise puzzling problems that arise from this view-point, particularly obviating the problem of ‘excess baggage’ in quantum mechanics. This solution is achieved via a separation between information carrying causal correlations of a single qubit and the bulk of its state space.  相似文献   

4.
This paper examines the interweaving of the history of quantum decoherence and the interpretation problem in quantum mechanics through the work of two physicists—H. Dieter Zeh and Wojciech Zurek. In the early 1970s Zeh anticipated many of the important concepts of decoherence, framing it within an Everett-type interpretation. Zeh has since remained committed to this view; however, Zurek, whose papers in the 1980s were crucial in the treatment of the preferred basis problem and the subsequent development of density matrix formalism, has argued that decoherence leads to what he terms the ‘existential interpretation’, compatible with certain aspects of both Everett's relative-state formulation and the Bohr's ‘Copenhagen interpretation’. I argue that these different interpretations can be traced back to the different early approaches to the study of environment-induced decoherence in quantum systems, evident in the early work of Zeh and Zurek. I also show how Zurek's work has contributed to the tendency to see decoherence as contributing to a ‘new orthodoxy’ or a reconstruction of the original Copenhagen interpretation.  相似文献   

5.
This Special Issue Hermann Weyl and the Philosophy of the ‘New Physics’ has two main objectives: first, to shed fresh light on the relevance of Weyl's work for modern physics and, second, to evaluate the importance of Weyl's work and ideas for contemporary philosophy of physics. Regarding the first objective, this Special Issue emphasizes aspects of Weyl's work (e.g. his work on spinors in n dimensions) whose importance has recently been emerging in research fields across both mathematical and experimental physics, as well as in the history and philosophy of physics. Regarding the second objective, this Special Issue addresses the relevance of Weyl's ideas regarding important open problems in the philosophy of physics, such as the problem of characterizing scientific objectivity and the problem of providing a satisfactory interpretation of fundamental symmetries in gauge theories and quantum mechanics. In this Introduction, we sketch the state of the art in Weyl studies and we summarize the content of the contributions to the present volume.  相似文献   

6.
Recent philosophy has paid increasing attention to the nature of the relationship between the philosophy of science and metaphysics. In The Structure of the World: Metaphysics and Representation, Steven French offers many insights into this relationship (primarily) in the context of fundamental physics, and claims that a specific, structuralist conception of the ontology of the world exemplifies an optimal understanding of it. In this paper I contend that his messages regarding how best to think about the relationship are mixed, and in tension with one another. The tension is resolvable but at a cost: a weakening of the argument for French's structuralist ontology. I elaborate this claim in a specific case: his assertion of the superiority of a structuralist account of de re modality in terms of realism about laws and symmetries (conceived ontologically) over an account in terms of realism about dispositional properties. I suggest that these two accounts stem from different stances regarding how to theorize about scientific ontology, each of which is motivated by important aspects of physics.  相似文献   

7.
While philosophers have subjected Galileo's classic thought experiments to critical analysis, they have tended to largely ignored the historical and intellectual context in which they were deployed, and the specific role they played in Galileo's overall vision of science. In this paper I investigate Galileo's use of thought experiments, by focusing on the epistemic and rhetorical strategies that he employed in attempting to answer the question of how one can know what would happen in an imaginary scenario. Here I argue we can find three different answers to this question in Galileo later dialogues, which reflect the changing meanings of ‘experience’ and ‘knowledge’ (scientia) in the early modern period. Once we recognise that Galileo's thought experiments sometimes drew on the power of memory and the explicit appeal to ‘common experience’, while at other times, they took the form of demonstrative arguments intended to have the status of necessary truths; and on still other occasions, they were extrapolations, or probable guesses, drawn from a carefully planned series of controlled experiments, it becomes evident that no single account of the epistemological relationship between thought experiment, experience and experiment can adequately capture the epistemic variety we find Galileo's use of imaginary scenarios. To this extent, we cannot neatly classify Galileo's use of thought experiments as either ‘medieval’ or ‘early modern’, but we should see them as indicative of the complex epistemological transformations of the early seventeenth century.  相似文献   

8.
In recent years a doctrine known as ontic structural realism (OSR) has achieved a degree of notoriety, but many people remain confused as to what exactly the doctrine amounts. In this paper three main variants of OSR are defined and discussed: (i) OSR1, which is the view that relations are ontologically primitive but objects and properties are not; (ii) OSR2, which is the view that objects and relations are ontologically primitive but properties are not; (iii) OSR3, which is the view that properties and relations are ontologically primitive but objects are not. Proponents of OSR claim that it is a “naturalistic” metaphysics, arguing that metaphysical views that take objects and/or properties as ontologically primitive are undermined by contemporary physics. In this paper it is argued that OSR1 and OSR2 are themselves undermined by contemporary physics. On the other hand, it is also argued that considerations about the objects of quantum mechanics and general relativity do seem to suggest that we should abandon some of our “common-sense” metaphysical intuitions, and that OSR3 is one of the metaphysical views that is compatible with what these theories seem to tell us about fundamental ontology.  相似文献   

9.
I display, by explicit construction, an account of the Aharonov–Bohm effect that employs only locally operative electrodynamical field strengths. The terms in the account are the components of the magnetic field of the solenoid at the location of electron, and even though the total field vanishes there, the components do not. That such a construction can be carried out demonstrates at least that whatever virtues they have for understanding and constructing new field theories, gauge fields in general make no metaphysical demands, and commit us to no novel ontology. I reflect on the significance of this for our understanding of quantum time-evolution and conclude that we should think of quantized matter as interacting individually with the other matter in the systems of which it is a part.  相似文献   

10.
Despite remarkable efforts, it remains notoriously difficult to equip quantum theory with a coherent ontology. Hence, Healey (2017, 12) has recently suggested that “quantum theory has no physical ontology and states no facts about physical objects or events”, and Fuchs et al. (2014, 752) similarly hold that “quantum mechanics itself does not deal directly with the objective world”. While intriguing, these positions either raise the question of how talk of ‘physical reality’ can even remain meaningful, or they must ultimately embrace a hidden variables-view, in tension with their original project. I here offer a neo-Kantian alternative. In particular, I will show how constitutive elements in the sense of Reichenbach (1920) and Friedman (1999, 2001) can be identified within quantum theory, through considerations of symmetries that allow the constitution of a ‘quantum reality’, without invoking any notion of a radically mind-independent reality. The resulting conception will inherit elements from pragmatist and ‘QBist’ approaches, but also differ from them in crucial respects. Furthermore, going beyond the Friedmanian program, I will show how non-fundamental and approximate symmetries can be relevant for identifying constitutive principles.  相似文献   

11.
Many consider the apparent disappearance of time and change in quantum gravity the main metaphysical challenge since it seems to lead to a form of Parmenidean view according to which the physical world simply is, nothing changes, moves, becomes, happens. In this paper, I argue that the main metaphysical challenge of Rovelli’s philosophical view of loop quantum gravity is to lead exactly to the opposite view, namely, a form of Heraclitean view, or rather, of radical process metaphysics according to which there is becoming (process, change, event) but not being (substance, stasis, thing). However, this does not entail that time is real. Fundamentally, time does not exist. I show how Rovelli’s understanding of loop quantum gravity supports the view that there is change without time, so that the physical world can be timeless yet ever-changing. I conclude by arguing that it is such a process-oriented conception that constitutes the revolutionary metaphysical challenge and philosophical significance of loop quantum gravity, while the alleged Parmenidean view turns out to be nothing but the endpoint of a long-standing metaphysical orthodoxy.  相似文献   

12.
I summarize certain aspects of Paul Feyerabend's account of the development of Western rationalism, show the ways in which that account is supposed to run up against an alternative, that of Karl Popper, and then try to give a preliminary comparison of the two. My interest is primarily in whether what Feyerabend called his ‘story’ constitutes a possible history of our epistemic concepts and their trajectory. I express some grave reservations about that story, and about Feyerabend's framework, finding Popper's views less problematic here. However, I also suggest that one important aspect of Feyerabend's material, his treatment of religious belief, can be given an interpretation which makes it tenable, and perhaps preferable to a Popperian approach.  相似文献   

13.
In this paper, I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the ‘why’ in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience.  相似文献   

14.
In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent's degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the general claim that probabilities always represent degrees of belief. We then argue that a quantum state prepared by some physical device always depends on an agent's prior beliefs, implying that the probability-1 predictions derived from that state also depend on the agent's prior beliefs. Quantum certainty is therefore always some agent's certainty. Conversely, if facts about an experimental setup could imply agent-independent certainty for a measurement outcome, as in many Copenhagen-like interpretations, that outcome would effectively correspond to a preexisting system property. The idea that measurement outcomes occurring with certainty correspond to preexisting system properties is, however, in conflict with locality. We emphasize this by giving a version of an argument of Stairs [(1983). Quantum logic, realism, and value-definiteness. Philosophy of Science, 50, 578], which applies the Kochen–Specker theorem to an entangled bipartite system.  相似文献   

15.
16.
Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum computers and employing entanglement in communications for a long time. But the real breakthrough only occurred in the 1980s when they shifted focus from general-purpose systems such as Turing machines to algorithms and protocols that solved particular problems, including quantum factorization, quantum search, superdense code, and teleportation. Key to their development was two groups of mathematical manipulations and deformations of entanglement—quantum parallelism and ‘feedback EPR’—that served as conceptual templates. The early success of quantum parallelism and feedback EPR was owed to the idealized formalism of entanglement researchers had prepared for philosophical discussions. Yet, such idealization is difficult to hold when the physical implementation of quantum information processors is at stake. A major challenge for today's quantum information scientists and engineers is thus to move from Einstein et al.'s well-defined scenarios into realistic models.  相似文献   

17.
I show how quantum mechanics, like the theory of relativity, can be understood as a ‘principle theory’ in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World.  相似文献   

18.
This paper explores the nature, development and influence of the first English account of absolute time, put forward in the mid-seventeenth century by the ‘Cambridge Platonist’ Henry More. Against claims in the literature that More does not have an account of time, this paper sets out More's evolving account and shows that it reveals the lasting influence of Plotinus. Further, this paper argues that More developed his views on time in response to his adoption of Descartes' vortex cosmology and cosmogony, providing new evidence of More's wider project to absorb Cartesian natural philosophy into his Platonic metaphysics. Finally, this paper argues that More should be added to the list of sources that later English thinkers – including Newton and Samuel Clarke – drew on in constructing their absolute accounts of time.  相似文献   

19.
According to inference to the best explanation (IBE), scientists infer the loveliest of competing hypotheses, ‘loveliness’ being explanatory virtue. This generates two key objections: that loveliness is too subjective to guide inference, and that it is no guide to truth. I defend IBE using Thomas Kuhn’s notion of exemplars: the scientific theories, or applications thereof, that define Kuhnian normal science and facilitate puzzle-solving. I claim that scientists infer the explanatory puzzle-solution that best meets the standard set by the relevant exemplar of loveliness. Exemplars are the subject of consensus, eliminating subjectivity; divorced from Kuhnian relativism, they give loveliness the context-sensitivity required to be truth-tropic. The resulting account, ‘Kuhnian IBE’, is independently plausible and offers a partial rapprochement between IBE and Kuhn’s account of science.  相似文献   

20.
In 1925 a debate erupted in the correspondence columns of the British Medical Journal concerning the effectiveness of eating raw pancreas as a treatment for diabetes. Enthusiasts were predominantly general practitioners (GPs), who claimed success for the therapy on the basis of their clinical impressions. Their detractors were laboratory‐oriented ‘biochemist‐physicians,’ who considered that their own experiments demonstrated that raw pancreas therapy was ineffective. The biochemist‐physicians consistently dismissed the GPs' observations as inadequately ‘controlled’. They did not define the meaning of ‘control’ in this context, although it clearly did not have the term's present‐day meaning of a trial employing an untreated comparison group of patients. Rather, the physician‐biochemists' ‘properly controlled’ experiments involved careful regulation of their patients' diet and other environmental factors, and evaluation of the therapy's success through biochemical, rather than just clinical, criteria. However, my analysis suggests that these factors alone are inadequate to account for the biochemist‐physicians' dismissal of the GPs' work as ‘uncontrolled’. I suggest that the biochemist‐physicians were deliberately exploiting the powerful rhetorical connotations of the term ‘control’. Ultimately, they implied that only a trial which they themselves had conducted could be deemed ‘adequately controlled’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号