首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
名词浅释     
手征性和手征场原认为费密子的自旋相对于它的动量方向,可以成右手螺旋关系(右旋),或左手螺旋关系(左旋).但自李政道、杨振宁和吴健雄等人发现弱相互作用中宇称不守恒后,人们知道只有左旋的  相似文献   

2.
通过DNA X光衍射的纤维与单晶研究,NMR的溶液研究,CD溶液中构象转变研究,以及各种半经典和量子力学的计算,已经确定了DNA的右旋、左旋及DNA双螺旋的多样性,并证实了左右旋之间的转变,使生物学获得突飞猛进的发展。但是所得到的DNA构象都是孤立静止的,对于DNA在活细胞中真实状态几乎一无所知,我们将已得到的  相似文献   

3.
何裕建 《科学通报》1995,40(7):613-613
由于核苷和核苷酸在核酸中不同的地方连接时,表现为不同的科顿效应,所以圆二色(CD)性测定是多核苷酸结构变化最灵敏的探针之一.三链DNA(三螺旋和辫状)作为DNA的一种特殊结构,无疑在CD性上与双螺旋DNA相比,会表现出某些相似和特别的地方.三螺旋DNA的CD谱研究,Pilch等人已有文章报道,Antao等人还采用CD手段对不同pH条件下poly[d(A-G)·d(C-T)]产生不同的构象进行了较详细的研究,作为三链DNA的另一种  相似文献   

4.
谢君  刘次全  屈良鹄 《科学通报》2003,48(20):2141-2144
肽核酸(peptide nucleic acid, PNA)是一种核酸类似物, 它的骨架以假肽键代替了原来的糖-磷酸骨架. PNA结合到核酸双螺旋上形成三螺旋的过程是PNA作用于核酸双螺旋最初也是最重要的一步. 但到目前为止, 由于缺乏PNA·2DNA三螺旋的晶体结构数据, 关于PNA·2DNA三螺旋的构象特征以及维持其构象作用力的研究还处在初始阶段. 本文较成功地搭建了PNA(T)·DNA(AT)三螺旋结构模型. 经过优化和分子动力学模拟后, 系统分析了它们的构象及其作用力. 为肽核酸在反义和反基因策略上的应用提供了可能的理论指导.  相似文献   

5.
陈惠黎 《科学通报》2004,49(5):514-514
<正> 组成核酸(RNA和DNA)的核苷酸链、组成蛋白质或多肽的氨基酸链、组成聚糖的糖链以及组成脂类物质的脂肪酸链是生命现象主要物质基础的4条化学链,其中除脂肪酸外,前3种化学链都属于生物大分子,20世纪中期,对蛋白质结构和功能的研究首先蓬勃发展,继以对核酸和基因的研究异军突起,形成生命科学的主流,并发展成为分子生物学这门新兴学科,20世纪80年代,由于测定糖链复杂结构的先  相似文献   

6.
磷酸根修饰的二维DNA晶体的研究   总被引:2,自引:0,他引:2  
利用可编程的刚性DNA分子瓦(DNA tile)中的双交叉(double-crossover, DX)分子的自组装形成二维DNA晶体, 可将分散的具有光、电、磁性质的分子和纳米粒子单元按照Watson-Crick的碱基配对原则精确自组装, 构成分子(纳米)线路和器件. 报道了用磷酸根修饰一条DNA链的5'端脱氧胞嘧啶核苷酸后, 将此DNA链与其他的21条DNA链在一定条件下自组装, 成功合成了具有特定几何构型的二维磷酸化DNA晶体, 并探讨了二维DNA晶体生长的条件和可能的机理.  相似文献   

7.
七十年代的最后一年是分子生物学取得重大成就的一年,这就是左旋DNA结构的发现。自1953年由J.Watson和F.Crick发现DNA的右旋双螺旋结构以来,一直认为它是DNA的普遍结构形式,并在生命体内占压倒优势。可是,去年12月13日这一定论被A.Rich等科学家打破了,他们发现了左旋DNA结构。这里三篇文章就是关于左旋DNA的发现及其在生物学上的意义的最新报道及论述。  相似文献   

8.
七十年代的最后一年是分子生物学取得重大成就的一年,这就是左旋DNA结构的发现。自1953年由J.Watson和F.Crick发现DNA的右旋双螺旋结构以来,一直认为它是DNA的普遍结构形式,并在生命体内占压倒优势。可是,去年12月13日这一定论被A.Rich等科学家打破了,他们发现了左旋DNA结构。这里三篇文章就是关于左旋DNA的发现及其在生物学上的意义的最新报道及论述。  相似文献   

9.
七十年代的最后一年是分子生物学取得重大成就的一年,这就是左旋DNA结构的发现。自1953年由J.Watson和F.Crick发现DNA的右旋双螺旋结构以来,一直认为它是DNA的普遍结构形式,并在生命体内占压倒优势。可是,去年12月13日这一定论被A.Rich等科学家打破了,他们发现了左旋DNA结构。这里三篇文章就是关于左旋DNA的发现及其在生物学上的意义的最新报道及论述。  相似文献   

10.
科学活动的目的旨在揭示大自然的奥秘,科学方法则是达到这个目的的必经之途. 1953年4月25日,两位年青的科学家沃森(James.D.Watson 25岁)和克里克(Francis Crick 37岁)在英国权威科学杂志《自然》上发表了一篇题为《核酸的分子结构——脱氧核糖核酸的结构》论文,郑重宣布:他们业已发现DNA的双螺旋结构.这种结构表明:一个DNA分子有两条核苷酸链以一定距离平行地围绕同一个轴盘旋,形成一个右旋的双螺旋体.  相似文献   

11.
体外λ-DNA形成新结构的证据   总被引:2,自引:1,他引:2  
曹恩华 《科学通报》1993,38(21):1964-1964
1990年白春礼等人首次用扫描遂道显微镜(STM)直接观察到λ-DNA经热变性后在体外形成一种三链辫状结构。这一结果不同于目前提出的三螺旋模型,即第三条链缠绕于双链DNA的大沟之中。据文献报道,用同型嘌呤和同型嘧啶或以单链DNA和双链DNA反应所得到的三链物比双链DNA有较低的熔解温度(T_m),在解旋过程中280nm光吸收值明显提高,对DNaseI酶不敏感等特征。三链辫状DNA的某些物化性质可能不同于  相似文献   

12.
两位来自新墨西哥州的科学家用隧道扫描显微镜(STM)第一次得到了组成DNA的独立碱基的图像,他们的成动更接近了人们的预期,即直接测定DNA顺序,来取代目前所使用的繁琐的化学方法,测定人类基因组的顺序。到目前为止,STM和其他一些先进的显微镜得到的图像只能解析DNA分子的螺旋形状,这些最新的结果显示每个核苷酸和螺旋结构,螺旋结构决定了碱基是一个嘌呤(腺嘌呤或鸟嘌呤)还是一个嘧啶(胞  相似文献   

13.
重新设计DNA的用武之地 DNA主链是由含重复的、带负电荷的磷酸基团构成的.因负电荷具有排斥性,受此特性影响,导致在双体螺旋结构下的双链DNA很难粘结在一起.在自然界中,只有两组碱基配对类型:腺嘌呤(A)和胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G).这两组配对类型主要靠氢键进行互相配对,但这些氢键间的结合作用很弱,极易被水分子破坏,而细胞却是由水注满的.本纳入指出,你信赖的价值遗传基因会被送至水中的氢键上,如果你是从事此项设计的化学家,相信你决不会这样做的.  相似文献   

14.
三螺旋DNA的现场Fourier表面增强Raman光谱研究   总被引:1,自引:0,他引:1  
方晔 《科学通报》1995,40(15):1378-1378
在双螺旋DNA的大沟中,第三条嘧啶链能与双螺旋同型嘌呤-同型嘧啶束道的互补嘌呤链结合而形成局部的分子间三螺旋DNA.研究表明通过形成三螺旋结构,寡脱氧核糖核酸能在体外和体内专一性地阻止基因转录和复制,而且可用于染色体分析和基因图谱.大量的Raman光谱研究已提供了双螺旋DNA在多种状态下的构象和其Raman光谱信号谱带间的对应关系,而且这种对应关系也同样适合三螺旋DNA的构象研究.本文首次研究了三螺旋DNAd(CT)_8·d(AG)_8·d(C~+T)_8在银电极表面上的现场Fourier表面增强Raman散射in situ FT-SERS)行为,同时也研究了其在固态(处于纤维和晶态之间)下的构象.  相似文献   

15.
庄旻 《科学通报》1995,40(10):936-936
锤头结构Ribozyme切割底物时的催化结构包括3个螺旋区和中间10核苷酸的单链区(编号为3~9,12~14,在我们过去文章中称3个双链区为茎区,现根据一些科学家的建议改称为螺旋区.我们原称的茎Ⅰ现称螺旋Ⅲ,原茎Ⅲ现称螺旋Ⅰ,原茎Ⅱ称螺旋Ⅱ).在我们实验室进行的机制研究表明3个螺旋区碱基配对的强弱以及螺旋的构象可影响反应的最适温度和切割效率.将螺旋Ⅰ和/或螺旋Ⅲ的RNA·RNA配对改为RNA·DNA(或DNA·DNA)配对既减弱了Ribozyme与底物的相互作用又改变了螺旋的构象,使反应的最适温度与切割效率都降低很多,有的甚至几乎看不到切割活性.将螺旋Ⅱ的RNA·RNA配对改为DNA·RNA配对只影响螺旋Ⅱ的构象而不影响Ribozyme与底物的相互作用,结果也使反应的最适温度和切割效率降低,但影响较小.为提高Ribozyme稳定性又不影响或少影响它的切割效率,我们研究了2’-O-甲基化对Ribozyme活性的影响.  相似文献   

16.
赛葵黄脉病毒: 一种含有卫星DNA的双生病毒新种   总被引:10,自引:0,他引:10  
周雪平  彭燕  谢艳  张仲凯 《科学通报》2003,48(16):1801-1805
从云南红河地区表现黄脉症状的杂草——赛葵上分离到病毒分离物Y47. 对Y47进行DNA-A的全序列测定, 结果表明, Y47 DNA-A全长2731个核苷酸, 基因组具有典型的双生病毒科病毒特征, 即编码6个ORFs, 其中病毒链编码AV1(CP)和AV2共2个ORFs, 互补链编码AC1~4共4个ORFs. 对基因组进一步比较发现, Y47 DNA-A与秋葵黄脉花叶病毒分离物201(GenBank登录号: AJ002451)的同源性最高, 达77%, 而与其他双生病毒的同源性均在76%以下, 表明Y47是双生病毒的一个新种, 命名为赛葵黄脉病毒(MYVV). 利用DNAβ的特异性引物beta01和beta02, 从Y47中扩增到卫星DNA分子(Y47β). 序列分析表明, Y47β全长1348个核苷酸, 至少在其互补链上编码一个有功能的ORF(C1). Y47β的全序列与Multan棉花曲叶病毒和Rajasthan棉花曲叶病毒的DNAβ的核苷酸同源性最高, 为62%~67%, 而与其他已报道的DNAβ的同源性均低于46%. 系统关系树分析表明, 卫星DNAβ分子与其辅助病毒是共同进化的.  相似文献   

17.
我们知道,所有DNA的核苷酸的自然突变,皆由天然放射线、化学作用物质等的作用与细胞内复制酶系对DNA的作用平衡而产生.而对任何物种来说,必然有一个由这平衡作用所产生的全突变概率(V_T).也就是说,全突变概率可以是有利突变、中性突变或有害突变(概率). 根据病毒及细菌基因编码的研究,一个有功能基因似可分为三种类型.  相似文献   

18.
●60年前,DNA双螺旋结构的阐明对于分子生物学的诞生具有里程碑意义,并由此促发了生命科学领域一系列革命性的变化。DNA的遗传信息得以完整地传递到下一代是因为DNA分子自身复制的一种半保留机制。DNA双螺旋结构是由两条方向相反的多聚核苷酸链相互缠绕构成的,这两条链所携带的遗传信息相当于镜像关系,不管保留哪一半,它都能复制出另一半。这  相似文献   

19.
在病毒DNA或病毒RNA的核苷酸序列中,隐藏着生命的重要秘密.许多热心探索生命秘密的科学家,都很重视测定核苷酸序列的工作.但DNA或RNA是由几千到几百万个核苷酸组成,而且排列毫无规则;因此在十年以前,人们感到测定核苷酸序列要比登天还难.历史也正是这样记载的:人类遨游太空已经将近二十年了,可是测定简单的病毒DNA或病毒RNA的全核苷酸序列才是最近二、三年的事情. 进入七十年代后,测定核苷酸序列的技术和方法有了可喜的突破.1970年以来各种限制性内切酶的应用以及1975年和1977年快速分析DNA片段一级结构的桑格尔-考尔森(Sanger-Coulson)法和马克山姆-吉尔伯特(Maxam-Gilbert)法的先后建立,促使  相似文献   

20.
生命由三个要素构成。第一,生命同外界之间具有境界膜。生命存在于为这境界膜所隔离的微小环境下。现在的生物细胞膜组成以脂质和蛋白质为主。第二,生命具有自我复制能力,即具有产生的后代同自己相似的自我保存能力,这功能基于DNA携带的遗传信息。第三,生命具有自我维持功能,换句话说,就是能进行代谢活动。在现在的生物中,合成核酸和蛋白质的顺序是: DNA 转录 RNA 转译蛋白质这就是著名的中心法则。现有的生物都以这样的顺序从DNA生物合成(转录)RNA的,但最近有人认为在最初生命诞生时不用DNA、而是以RNA作为遗传信息体的。其根据有以下几个方面:1.各种RNA(如mRNA、rRNA、tRNA等)同蛋白质的生物合成关系密切,同DNA则无直接联系;2.DNA是RNA糖部分2’-OH的还原,就是说可以从RNA进行生物合成;3.DNA的生物合成过程中需要短链RNA引物;4.小病毒的遗传物质是RNA,大病毒是DNA;5.RNA病毒的逆转录酶也许是留有从RNA到DNA过渡期痕迹的化石;6.NAD和FAD那样的RNA诱导体作为辅酶参与酶作用;7.在前生物合成系统中,低聚核糖核苷酸比低聚脱氧核糖核苷酸更容易被合成;8.在RNA中有的具有酶作用,等等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号