共查询到20条相似文献,搜索用时 0 毫秒
1.
结合影响变电站选址的实际因素拟定具体的规划方案,建立变电站选址的数学模型,并对标准粒子群优化算法进行改进,提出免疫粒子群优化算法,用该算法对简化的变电站选址模型进行优化,并在MATLAB的GUI中实现算法功能。 相似文献
2.
3.
针对传统粒子群算法(Traditional Particle Swarm Optimization,TPSO)存在的易陷入局部最优、收敛速度慢等缺点,提出了一种基于载波的粒子群算法(carrier-wave Particle SwarmOptimization,CWPSO)。根据正弦函数具有的自变量连续变化而值域不变的特点,该算法设计了以载波自变量变化确定粒子搜索位置的新方法,从而极大地提高了全局搜索能力。同时对于搜索到的可能极值点,通过载波扩展的方法进行局部寻优,以进行精确搜索。对一系列测试函数的寻优结果表明:CWPSO算法不仅都能找到最优值,且寻优时间仅为TPSO算法和惯性权值线性下降的改进PSO算法(Line-WPSO,LWPSO)的1/3~1/5;同时,CWPSO具有对寻优问题维数不敏感的优点,大大扩展了该算法的适用范围。 相似文献
4.
以广义坐标形式的高斯原理作为建模方法,采用传统优化与智能优化方法(粒子群算法)相结合的思路,充分发挥传统算法的快速收敛和智能算法的全局搜索的优势,实现约束优化问题的全局寻优目的,从而有效地克服构型奇异给计算造成的困难.分别采用增广拉格朗日方法、零空间方法和高斯优化方法进行仿真,结果表明,高斯优化方法不仅具有较高的计算精... 相似文献
5.
提出了离散三群粒子群优化算法(DTHSPSO),该算法将整个粒子群分为三群,第1群粒子朝全局历史最优方向飞行,第2群粒子朝着相反方向飞行,第3群粒子在全局历史最优位置周围随机飞行。粒子的速度保持连续性,对于粒子位置的处理采用两种方法:一是通过传递函数,根据速度的大小进行离散化;二是直接通过强硬限制函数(Hardlim函数)将位置离散化。通过对两种离散函数进行测试与比较,表明两种DTHSPSO都比基本离散粒子群优化算法(DPSO)具有更好的优化性能,而且直接采用Hardlim函数的DTHSPSO算法效果更加突出。 相似文献
6.
为克服粒子群算法在求解复杂的多峰问题时极易陷入局部最优解的缺陷,作者提出一种基于模拟退火的改进粒子群算法(PSOBSA).在PSOBSA算法中,每间隔若干代,对粒子的历史最优位置进行变异操作,以产生新的粒子;并采用模拟退火的思想,允许新产生的粒子的目标函数值在有限范围内变化;最后采用一种广义的学习策略提升种群收敛的概率.在基准函数的测试中,结果显示PSOBSA算法比基本PSO算法有更好的性能. 相似文献
7.
于志奇 《晋中师范高等专科学校学报》2011,(3):20-22
粒子群优化算法(PSO)在众多的优化问题上表现出良好的性能,广泛应用于很多领域,但极易陷入局部最优解的困局.本文从提高收敛速度方面对PSO算法改进进行了研究,并通过仿真实验证明改进算法的可行性,一定程度上克服了PSO算法易于陷入局部最优解的缺点. 相似文献
8.
针对粒子群优化算法在求解云计算任务调度问题中存在的收敛速度慢、精度低、易陷入局部极值等缺陷,综合考虑最大完成时间最少、任务执行总时间最优两个优化目标,提出一种多策略融合的粒子群优化(multi-strategy particle swarm optimization, MSPSO)算法,并将其应用于求解云计算任务调度问题。该算法融合模拟退火算法、饥饿游戏搜索和双重变异限制策略。首先,通过模拟退火算法动态更新惯性权重,平衡粒子群优化算法的全局搜索和局部搜索,帮助粒子跳出局部极值。其次,引入饥饿游戏搜索算法优化粒子位置更新策略,在算法后期加快粒子收敛速度,提高结果精度。最后,采用双重变异限制策略,同时限制粒子速度和位置,避免粒子发生越界。与其他3种粒子群优化算法进行对比实验,在适应度平均值、最小值、标准差3个方面,MSPSO都有更好的表现。通过仿真,在求解不同任务量的云计算任务调度问题中,MSPSO在总成本、适应度值最小化两方面均表现出明显优势。尤其当任务量为40时,MSPSO总成本比其他算法分别降低了14.4%、15.3%、11.2%,适应度值分别降低了10.5%、10.6%、7.6%,... 相似文献
9.
10.
针对粒子群算法(particle swarm optimization,PSO)"早熟收敛"和后期收敛速度慢的特点,文章提出了一种改进的PSO算法。该算法摒弃了近年来许多在改进过程中引入过量繁琐公式、各种变换因子而导致算法过程冗杂的粒子群改进方法,而是在简化PSO算法的基础上引入自适应局部搜索因子,在种群不变的情况下拓宽了搜索范围并提高了搜索精度,且在某些测试函数下寻优效果明显优于其他复杂的PSO优化算法。最后的测试实验表明,该文算法能避免早熟问题,有效地提高了算法的精确寻优能力。 相似文献
11.
12.
唐莉 《中国新技术新产品精选》2010,(20):1-1
粒子群算法适合求解连续变量优化问题,本文提出了粒子群算法的新离散化方法。常规粒子群算法在电力系统优化问题中取得了成功,但有“趋同性”。本文提出了改进多粒子群优化算法(IPPSO),IPPSO是两层结构:底层用多个粒子群相互独立地搜索解空间以扩大搜索范围;上层用1个粒子群追逐当前全局最优解以加快收敛。粒子群以及粒子状态更新策略不要求相同。 相似文献
13.
为了更好地求解大规模柔性车间调度问题,提高柔性车间调度算法的寻优性能,提出一种基于熵的混合粒子群算法.该算法把粒子群算法、遗传算法和模拟退火算法相结合,同时用种群熵自适应调节惯性系数和变异概率,以增强算法的寻优能力和克服算法的过早收敛.典型实例仿真结果表明,该算法能更好地求解柔性车间调度问题,与传统的优化算法相比,在优化精度上具有明显的优越性. 相似文献
14.
粒子群优化算法(PSO)在众多的优化问题上表现出良好的性能,广泛应用于很多领域,但极易陷入局部最优解的困局.本文从提高收敛速度方面对PSO算法改进进行了研究,并通过仿真实验证明改进算法的可行性,一定程度上克服了PSO算法易于陷入局部最优解的缺点. 相似文献
15.
为优化船体双层底结构,在适于求解连续变量的标准粒子群优化算法(PSO)基础上,提出一种离散变量PSO算法,并利用标准PSO算法和离散变量PSO算法分别对测试函数和某大型油船双层底结构优化设计问题进行求解,该双层底结构的响应分析计算采用正交异性板计算模型实现.研究了不同取值的惯性权重和学习因子对优化结果的影响.通过对计算结果的对比分析,得出该离散变量PSO算法应用于船体板架结构优化设计时,其惯性权重和学习因子的最佳取值范围. 相似文献
16.
大型航空产品工件受温度变化而膨胀变形等影响,这会对产品的精确数字化测量以及部件对接的精度产生重要影响.该文提出一种工件三维膨胀变形的激光跟踪仪转站参数优化方法,根据工件的三维数模,通过ANSYS有限元热分析计算工件初步热膨胀变形的中心点;建立考虑工件三维热膨胀变形的转站目标优化函数,对种群个体进行随机初始化赋值,并计算... 相似文献
17.
群智能是一种基于对分散的、自组织的集群行为的模拟而得到的一种人工智能技术,粒子群算法和蚁群算法是其中的典型代表.本文通过分析两种算法的缺陷,提出了一种粒子群算法和蚁群算法相结合的混合算法, 扩大了搜索空间,降低了搜索陷入局部极小的概率. 相似文献
18.
提出一种基于量子激励粒子群算法优化BP网络的参数方法.该算法在粒子群优化算法中引入量子论思想,克服了传统粒子群算法易陷入局部极值、优化效果较差的缺点,最终得到BP网络的最佳参数值.利用优化后的BP网络控制仿生机器马的运动状态,仿真结果表明该算法能快速、准确地达到最佳控制效果. 相似文献
19.
教务排课问题庞大、复杂,是高校进行正常教学过程中的一个重要环节,直接影响到教学资源及教学质量。排课问题要满足各种约束条件,比如教师资源、教室资源、课程、班级、上课时间等。在这些约束下,寻求一种优化组合,生成相对比较科学、合理、能充分利用现有资源并尽可能让教师和学生满意的课程安排表,将教学有秩序高效地进行。针对这种组合问题,本文提出了一种改进的离散群算法。 相似文献
20.
将差异演化(DE)算法和标准PSO算法混合进行进化,把DE算法的优势带入到粒子群算法中,利用DE算法其本身具备的对粒子个体的交叉和变异操作使PSO算法种群保持寻优所需的多样性.文中将这种算法成功应用到神经网络的优化中,从而保证粒子速度能获得较大程度的更新保持较好的搜索能力,避免陷入"早熟"或"停滞"的能力大大提高. 相似文献