共查询到17条相似文献,搜索用时 78 毫秒
1.
基于压缩感知过程的语音增强 总被引:2,自引:0,他引:2
压缩感知(compressive sensing,CS)是一种基于信号稀疏性的采样方法,可以有效提取信号中所包含的信息。该文提出了一种基于CS过程的语音增强新算法。算法利用语音在离散余弦变换(discrete cosine transform,DCT)域下的稀疏性,采用Hadamard矩阵对带噪语音进行压缩测量,通过改进的正交匹配跟踪(orthogonal matching pursuit,OMP)算法恢复语音信号,实现语音增强。与经典谱减法和子空间算法进行实验对比分析,结果表明:该算法在降噪性能上优于经典谱减法和子空间算法。 相似文献
2.
石磊 《南京邮电大学学报(自然科学版)》2013,33(1):16-22
基于小波分解下的语音压缩编码与重构框架,研究分析了含噪情况下贪婪算法的重构性能和抗噪性能,提出了一种改进的自适应压缩采样匹配追踪算法(ACoSaMP).该算法可在稀疏度未知的情况下,通过设置可变步长分阶段实现对稀疏度的逼近.同时,在每次迭代过程中,用最小二乘法对残差信号进行估计,代替传统CoSaMP算法对整个信号的估计.最后用小波去噪法对合成语音进行处理.实验结果表明:不同压缩比下,该算法的主客观重构效果均优于现有同类算法,对噪声有较强的鲁棒性. 相似文献
3.
基于压缩感知的语音盲稀疏重构算法及其去噪应用 总被引:1,自引:0,他引:1
根据传统的正交匹配追踪(OMP)算法和稀疏度自适应匹配追踪(SAMP)算法各自的缺陷,提出可以在盲稀疏状态下重构带噪语音的多匹配正交追踪(MMOP)算法。该算法采用同时匹配多个原子以及同步增大和缩小原子集的办法来解决SAMP算法中原子的过匹配和欠匹配现象,此外,还提出一种新的去噪思想和设置初始步长方法,并且采用分阶段步长来重构原始语音信号。研究结果表明:本文算法不仅修正SAMP算法的过匹配和欠匹配的现象,而且还具有匹配速度快、迭代次数少的优点,同时又提高语音信号在盲稀疏状态下的重构精度,此外,该算法还可以应用在噪声语音中,有较明显的去噪效果,且其重构后的语音主客观质量评价都要好于传统的OMP算法和SAMP算法。 相似文献
4.
压缩感知是一种结合采样和压缩的新技术,是近年来研究的热点.文中研究基于压缩感知(Compressed Sensing,CS)理论的语音信号处理新技术.验证了语音信号在离散余弦变换域(Discrete Cosing Transform,DCT)的近似稀疏性.根据文献[1]提出的最优观测理论,文中针对语音信号进行了研究,提... 相似文献
5.
语音压缩感知及其重构算法 总被引:1,自引:0,他引:1
在研究语音信号在小波域的稀疏性的基础上,提出双正交小波变换的方法,与一维小波变换方法相比稀疏度提高10%~25%.此外,提出基于自适应次梯度投影算法(ASPM)进行压缩感知(CS)语音信号重构的方案.ASPM算法首先根据压缩感知重构模型建立包含稀疏重构信号并具有随机属性的凸集,然后运用次梯度投影的思想将该凸集的投影转化... 相似文献
6.
唐力 《南京邮电大学学报(自然科学版)》2012,32(2):64-68
根据语音信号经过小波分解后低频分量和高频分量的特点,提出分别对他们进行自适应压缩感知。首先对信号的低频分量用训练的过完备基进行稀疏分解,降低了稀疏分解过程中的计算量。然后详细描述了改进自适应观测矩阵的产生,以及对低频和高频分量分别进行自适应观测。最后通过OMP重构算法分别对低频和高频分量进行重构,通过小波合成还原出原始信号。实验表明,语音信号在基于小波分解的自适应压缩感知方案中具有良好的重构性能。 相似文献
7.
基于自适应基追踪去噪的含噪语音压缩感知 总被引:1,自引:0,他引:1
针对含白噪语音信号压缩采样后采用基追踪方法重构性能差的问题,提出了自适应基追踪去噪方法,该方法根据原含噪信号的信噪比自适应选择重构最佳参数,从而在重构语音的同时提高原信号信噪比。把该方法运用到含噪语音压缩感知中,对重构语音进行了主客观评价,并分析了不同压缩比下的重构性能。仿真结果显示:本文方法既实现了压缩采样,又在重构信号时实现了语音增强,优于基追踪重构方法 相似文献
8.
针对目前合成孔径雷达(SAR)图像压缩感知重构算法没有充分利用小波系数相关性的缺点,提出了一种综合利用尺度间衰减性和尺度内方向能量聚集性的SAR图像贝叶斯压缩感知重构算法(DLWT-TDC)。首先采用方向提升小波变换(DLWT)对SAR图像进行稀疏表示,然后在3个高频子带中分别使用3×5、5×3、5×5邻域设计了具有方向和空间局部自适应的先验概率分布模型,最后利用马尔科夫链蒙特卡罗采样的贝叶斯推理恢复出图像的小波系数,进而得到重构图像。实验结果表明,DLWT-TDC算法在采样率为50%~90%下可以提高图像的重构性能,与仅利用尺度间相关性的小波树结构的压缩感知重构算法相比,在90%高采样率下的重构性能可提高3dB左右。 相似文献
9.
稀疏性是压缩感知的前提,然而,自然图像通常不是稀疏的,因此对图像直接应用压缩感知算法很难取得高压缩效率.针对图像信号,将编码思想融入压缩感知理论,提出一种简单有效的零树压缩感知方法.该方法先利用零树思想辅助压缩感知测量,在得到测量值的同时编码重要系数的位置;然后提出零树追踪重构算法,通过精确解码重要系数位置来重构原始图像小波系数,提高重构精度.实验结果表明,相比于现有匹配追踪算法和EZW算法,本文方法有更高的压缩比和更好的图像重构质量. 相似文献
10.
《南阳理工学院学报》2017,(4):32-36
传统的数据重建算法受奈奎斯特采样定理限制,采样率要求较高不能灵活等适应实际环境。本文基于压缩感知和稀疏表示理论,提出一种采样点少且流形结构简单的图像重建算法,以少量的采样数据实现从低分辨率观测中恢复高分辨率图像。算法首先通过原始数据特征设计出稀疏表示矩阵;其次,根据表示数据和观测数据的不相关性找出与稀疏表示矩阵对应的最优感知矩阵;最后,通过稀疏求解实现数据的重建与去噪。实验表明,该算法在同等条件下能够避免大量冗余数据的计算,提高数据重建的稳定性和有效性。 相似文献
11.
为在复杂环境中提高语音信号的重构精度, 提出基于正交块对角结构的语音信号盲压缩重构算法, 通过最优求解找到一组对应的正交块对角变换基及稀疏矩阵, 利用二者乘积实现语音信号压缩重构。该算法确保盲压缩感知理论具有唯一解, 能从复杂的环境中恢复原始语音信号, 具有更强的自适应性, 在保证听觉效果的同时, 大大降低了观测维度。实验结果表明, 基于正交块对角结构盲压缩感知(OBD-BCS: Orthonormal Block Diagonal Blind Compressed Sensing)算法能高质量恢复语音信号原始结构。 相似文献
12.
利用语音在DCT域的稀疏性,提出了一种基于语音分为清音和浊音的特点,自适应分配观测点数的语音重构方法.首先根据清浊音在整个语音段占有的能量比分配观测点,然后判断每帧语音性质.如果是清音,则根据能零比的大小来分配该帧的观测点数;如果是浊音,则根据能量的大小来分配观测点数.实验表明:语音信号是稀疏的并且可压缩,在同种压缩比下,文中所采用的语音重构算法具有较好的信噪比、误差以及MOS分. 相似文献
13.
周开利 《海南大学学报(自然科学版)》2002,20(2):102-103
基于子波变换的多分辨分析特性 ,直接采用Mallat多层分解的低频系数进行语音信号压缩 ,并进行了计算机仿真 ,结果表明该方法是有效的、可行的 . 相似文献
14.
实时心电监测的数据量过大,给系统的传输和存储带来很大压力.为降低采集端的功耗,达到既减轻采样复杂度又降低传输数据量的目的,使用压缩感知技术对心电信号进行压缩采样及重构.以信号重构时间和重构误差为关键指标,研究不同重构算法和小波基的性能表现.结果表明,当压缩率在30%以内时,基追踪作为信号重构算法的百分比均方根差小于4%,同时其重构耗时最短;当压缩率在70%以内时,子空间追踪的误差小于10%,且始终保持较低的重构耗时.最优小波基往往和具体压缩率有关. 相似文献
15.
为提高压缩感知图像的重构质量,提出了一种基于离散余弦变换(DCT)分频带压缩感知的平滑投影Landweber重构算法.该算法充分考虑了不同的DCT系数频带对重构图像质量有不同的影响,对图像进行分块DCT后,按照频带能量大小重新组织DCT系数,对能量大的频带分配大的采样率,通过分频带变采样率的随机矩阵实现随机观测,采用平滑滤波器消除块效应,由投影Landweber算法实现图像的重构.实验结果表明,与BCS-SPL和MS-BCS-SPL重构算法相比,文中提出的算法显著提高了重构图像的峰值信噪比. 相似文献
16.
在陆上油田,受地表障碍物限制,常规的基于规则采样理论的地震数据采集越来越难以实现,同时为了解决越来越复杂的地质问题,需要更密集的空间采样,造成地震勘探成本急剧上升。为了适应复杂的地表条件和节省勘探成本,本文研究基于压缩感知理论设计随机地震观测系统,利用高维空间低秩约束算法完成随机地震数据的高密度规则化重建,通过理论模型对方法进行了验证,结果表明在同样采样密度下,该方法能获得比规则采样更好的成像效果,为当前东部老油区的高效高密度地震勘探探索一条新途径。 相似文献
17.
阐述了压缩感知理论产生的背景、基本原理和应用方式,研究了两类压缩感知重构算法的重构思想和方法,并将两类重构算法的典型算法正交匹配追踪和基追踪应用于稀疏信号的重构。结果表明:对于无噪观测和含较小噪声的观测,正交匹配追踪算法从重构频率和重构时间两方面显示出更好的性能。 相似文献