首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
由于没有镉污染,对环境友好,用于高功率设备的镍氢电池的需求量增长很快,目前每年的需求量约为5亿只。但是镍氢电池的一些性能还不能完全满足电动工具的使用要求,突出表现在电池大电流充放循环寿命较差。因此,研制高性能的高倍率镍氢电池不仅具有重要的研究意义,也有很大的应用价值。本文研究影响SC型动力电池循环寿命衰减的主要因素,测量了在大电流循环过程中镍氢电池的内阻、温度及重量变化,并运用SEM、XRD对电池内阻升高的原因进行了分析。我们认为电池内阻升高是镍氢电池大电流循环寿命差的丰要原因,分析发现在镍氢电池进行大电流充放电循环时,电池正极膨胀,负极微粉化,电池内部孔隙率增加,致使电解液干涸,电池内阻升高。通过增加负极容量,抑制正极膨胀,可以有效改进镍氢电池大电流充放时的循环性能。  相似文献   

2.
高功率型镍氢电池的循环性能   总被引:2,自引:0,他引:2  
由于没有镉污染,对环境友好,用于高功率设备的镍氢电池的需求量增长很快,目前每年的需求量约为5亿只.但是镍氢电池的一些性能还不能完全满足电动工具的使用要求,突出表现在电池大电流充放循环寿命较差.因此,研制高性能的高倍率镍氢电池不仅具有重要的研究意义,也有很大的应用价值.本文研究影响SC型动力电池循环寿命衰减的主要因素,测量了在大电流循环过程中镍氢电池的内阻、温度及重量变化,并运用SEM、XRD对电池内阻升高的原因进行了分析.我们认为电池内阻升高是镍氢电池大电流循环寿命差的主要原因,分析发现在镍氢电池进行大电流充放电循环时,电池正极膨胀,负极微粉化,电池内部孔隙率增加,致使电解液干涸,电池内阻升高.通过增加负极容量,抑制正极膨胀,可以有效改进镍氢电池大电流充放时的循环性能.  相似文献   

3.
燃料电池混合动力系统镍氢电池特性   总被引:1,自引:0,他引:1  
结合Rint模型分析某80 Ah镍氢动力电池单体特性,以确定其在燃料电池混合动力系统中的最佳工作范围,并加以实验验证.结果显示,在燃料电池混合动力系统中镍氢电池SOC应保持在40%~60%之间,充放电电流应处于-160~240 A的范围,温度应维持在常温附近,以确保系统安全性和经济性.台架实验显示,通过稳态分配结合动态滤波的算法模式和恰当的参数匹配,整车控制器可以使镍氢电池工作在目标区域,从而使混合动力系统满足城市公交工况的动力性和经济性需求,并限制燃料电池发动机的输出功率波动.  相似文献   

4.
研究了一种镍氢电池负极-金属氢化物电极新型粘合剂SBS,测定了以SBS为粘合剂的电极性能,并与PTFE和HPMC两种粘合剂进行了对比。研究结果表明:采用SBS作粘合剂的电极的耐碱性和柔性优于其它粘合剂,其放电容量、放电电位、大电流放电能力、内阻、电催化活性等性能也较好,尤其是循环性能优良,有望成为一种比较理想的金属氢化物电极粘合剂;SBS的最佳加入量为1%左右。  相似文献   

5.
为实现镍氢电池动力系统电动大巴车的均衡充电,针对镍氢电池现有的均衡器均衡电流小,均衡时间长等不足,设计了大电流电压控制式均衡系统,与现有充电机和电池管理与检测系统配套使用.实验证明此系统可以有效地对电池组进行均衡充电,延长电池寿命.  相似文献   

6.
镍氢电池充放电传热过程模拟   总被引:1,自引:0,他引:1  
结合实验数据和理论分析,建立了D型镍氢电池的传热模型.用该模型对电池的充放电过程进行模拟,并且给出了电池内部的温度分布.与实验测量值比较,两者结果吻合较好.该模型和相应的模拟为进一步研究电池的发热特性、改善其温度性能提供了有益参考.  相似文献   

7.
为了更好地满足航空、军事以及能源器件对于高功率化学电源的需求,对LTT65系列电池进行了优化,控制原有电池其他参数不变的同时,使得内部颗粒变小,优化后的电池对于放电倍率进行了提升。针对改进后的电池,首先对于电池的放电性能进行测试,得到放电深度的具体数值,其次根据电池放电后的电压回升问题通过HPPC(hybrid pulse power characteristic)方法对于内阻进行测试和计算。结果表明:电池在高SOC(state of charge)状态下内阻伴随着放电率的增加而减小,电池在较低SOC状态下内阻增加,呈现出一定的复杂趋势。最后对于该倍率状态下的电池温升进行分析,得到了电池温度会随着电池放电倍率的增加将会出现拐点的结论,电池的温度拐点出现在45℃,最大温度值为63℃,温升值为38℃,而后根据实验结果对于电池不同倍率下的温升、热功率等参数进行测定,对于电池的放热特性进行了整体研究。  相似文献   

8.
赵勇 《科技资讯》2012,(27):72-73
镍氢充电电池在充电和使用过程中是否会产生和释放氢气,其浓度究竟有多大?本文通过模拟小家电实际使用情况研究AA镍氢充电电池在使用和充电过程中的氢气释放行为,以及戈尔膨体聚四氟乙烯(ePTFE)透气膜对氢气扩散所起的作用。  相似文献   

9.
比较了各种倍率恒流充电和脉冲充电过程中N i-MH电池的温度和内压,进行了在动力电池工作荷电状态范围内的300周高倍率循环测试,并对循环前后电池正负极电位、储氢合金形貌、循环伏安特性的变化进行了研究.实验结果表明,高倍率充放电循环使电池性能下降的主要原因是负极合金性能的恶化.  相似文献   

10.
研制了一种宽温区镍氢电池. 通过正极添加改善高温充电效率的添加剂,负极采用低温动力型合金粉,并采用多元的电解液配方,从而实现在工作温度范围(-40~60 ℃)内可正常使用的镍氢电池.  相似文献   

11.
研究动力氢镍电池循环寿命仿真问题,针对目前动力系统仿真中电池模型不考虑循环寿命的缺陷,为提高电池循环性能仿真精度,提出了动态更新模型参数进行电池寿命仿真的方法。以Olivier-Louis电池模型为基础,提取出7 A.h氢镍电池的模型参数,并在Simulink平台上对模型进行了仿真验证。结果表明,该模型充放电电压的误差在5%以内;然后结合已有的高温循环寿命测试数据对电池循环放电性能进行了仿真,得到了放电电压误差不超过0.6%的结果;用另一种电池的常温测试数据进行充电仿真,充电电压误差小于4%。这些结果表明电池寿命仿真方法具有可行性,有望进一步应用于电池组的循环寿命仿真。  相似文献   

12.
用电化学阻抗谱(EIS)方法,对金属氢化物(MH)电极和两种商品化金属氢化物/镍(MH/Ni)电池性能进行了研究,通过建立等效电路模型分析了MH电极的电化学阻抗谱,结果表明,在不同放电深度和充放电循环时,电极的欧姆阻抗,反应电阻和界面电容等呈规律地变化,并与电极性能的变化相一致,欧姆阻抗和由制备工艺带来的电极反应性能折差别,是引起两种商品化MH/Ni电池电化学充放电性能差别的主要原因,也说明EIS可用于检测MH电极的荷电状态和反应性能,并可作为在线无损伤MH/Ni电池性能测试技术。  相似文献   

13.
采用尖晶石LiMn2O4材料制作了18650型锂离子电池, 分析了影响锂离子电池大电流放电性能的主要因素如极耳、极片、电解质溶液等。又采用新型正极材料LiMnxNiyCozO2开发出性能更优越的18650型高功率锂离子电池, 该电池可10C连续放电和8C快速充电, 并具有优秀的循环性能和搁置性能。18650型高功率锂离子电池的开发, 为研制混合电动车(HEV)用高功率锂离子电池提供了实验依据。  相似文献   

14.
采用尖晶石LiMn2O4材料制作了18650型锂离子电池,分析了影响锂离子电池大电流放电性能的主要因素如极耳、极片、电解质溶液等。又采用新型正极材料LiMnxNiyCozO2开发出性能更优越的18650型高功率锂离子电池,该电池可10C连续放电和8C快速充电,并具有优秀的循环性能和搁置性能。18650型高功率锂离子电池的开发,为研制混合电动车(HEV)用高功率锂离子电池提供了实验依据。  相似文献   

15.
镍正极掺杂NiOOH的MH/Ni电池性能   总被引:1,自引:0,他引:1  
将化学氧化法合成的NiOOH以一定的比例掺杂到商用球形Ni(OH)2粉末当中,以此作为镍正极活性材料,制成额定容量为1 5Ah圆柱密封AA型MH/Ni碱性蓄电池·采用恒流充放电和交流内阻分析方法测试了该电池的性能·结果表明:镍正极掺杂NiOOH的MH/Ni电池在活化效率和循环寿命方面得到了明显的改善和提高,掺杂NiOOH的镍正极具有更高的反应活性及更小的电化学反应阻抗,因而表现出良好的电化学性能·实验表明,镍正极活性材料中NiOOH的掺杂量为1%~3%时对电池性能有较好的影响,掺杂量过多会降低电池的放电容量·  相似文献   

16.
以国外的流行病研究资料、健康统计资料和国内的有关统计资料为基础,采用污染物生命周期分析的方法,依据归宿分析-效应分析-危害分析这条途径,研究了采煤-运输-发电过程产生的气载污染物通过空气、水和食品三种暴露途径对人体健康的危害,将煤-电生产整个生命周期排放的气载污染物与人体健康危害之间的定量关系以单位质量污染物所引起的残疾调整生命年(D)表示,提出了煤-电气载污染物对人体健康危害的定量评价方法.对广东茂名热电厂实例分析表明,在煤-电生产的整个生命周期过程中,由SOx、NOx、Cr6 三种污染物引起的健康危害为总健康危害的90.7%,气载致癌物中Cr6 的健康危害最大,三个不同生产阶段以燃煤发电阶段产生的人体健康风险最大.  相似文献   

17.
血斑小叶蝉的发生与防治   总被引:1,自引:0,他引:1  
血斑小叶蝉在我省中南部1a发生5代,卵在幼树树干、枝条表皮下越冬,翌年5月上旬开始孵化,5月下旬可见成虫;6月上旬第2代若虫出现,6月中旬羽化为成虫;6月下旬可见第3代若虫,7月上旬可见第3代成虫;7月中下旬可发现第4代若虫;高温多雨季节,8月中旬偶见第5代若虫。若虫历期15-30d不等,9月中旬成虫产越冬卵。化学防治以50%甲胺磷乳油3000倍液防治效果为佳,48h的虫口减退率达100%。防治始期在1代若虫盛发期(5月中下旬)。  相似文献   

18.
随着物联网及相关信息技术的发展,文章在现有电网资产管理基础上,从三个方面提出电网资产全寿命周期管理策略:基本策略、管理规范化手段多样化及强化管理手段,并分别描述了具体方法或流程;最后给出了设备资产全寿命追踪与管理整体流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号