首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new tropomyosin essential for cytokinesis in the fission yeast S. pombe.   总被引:4,自引:0,他引:4  
Mutations in the Schizosaccharomyces pombe cdc8 gene impair cytokinesis. Here we clone cdc8+ and find that it encodes a novel tropomyosin. Gene disruption results in lethal arrest of the cell cycle, but spore germination, cell growth, DNA replication and mitosis are all unaffected. Haploid cdc8 gene disruptants are rescued by expression of a fibroblast tropomyosin complementary DNA. Immunofluorescence microscopy of wild type and cdc8 gene disruptants indicates that cdc8 tropomyosin is present in two distinct cellular distributions: in dispersed patches, and during cytokinesis as a transient medial band. Collectively these results indicate that cdc8 tropomyosin has a specialized role which, we suggest, is to form part of the F-actin contractile ring at cytokinesis. These results establish the basis for further genetic studies of cytokinesis and of contractile protein function in S. pombe.  相似文献   

2.
3.
4.
Actin microfilament dynamics in locomoting cells   总被引:71,自引:0,他引:71  
J A Theriot  T J Mitchison 《Nature》1991,352(6331):126-131
The dynamic behaviour of actin filaments has been directly observed in living, motile cells using fluorescence photoactivation. In goldfish epithelial keratocytes, the actin microfilaments in the lamellipodium remain approximately fixed relative to the substrate as the cell moves over them, regardless of cell speed. The rate of turnover of actin subunits in the lamellipodium is remarkably rapid. Cell movement is directly and tightly coupled to the formation of new actin filaments at the leading edge.  相似文献   

5.
Beach D  Nurse P 《Nature》1981,290(5802):140-142
The fission yeast, Schizosaccharomyces pombe, has been used extensively for genetic studies but until now it has not been utilized as a host organism for DNA cloning. Here we describe a method for high-frequency transformation fo a leu 1(-) strain of this yeast with hybrid plasmids containing the Saccharomyces cerevisiae LEu 2(+) gene, a bacterial plasmid and either the S. cerevisiae 2 μm plasmid or autonomously replicating sequences (ars)(1) derived from S. pombe DNA. Some of the plasmids contain unique restriction sites which make them suitable for the isolation of S. pombe genes, and they can also be used for the exchange of DNA between S. pombe and S. cerevisiae.  相似文献   

6.
Fantes P 《Nature》1979,279(5712):428-430
THERE is currently much interest in the mechanism which controls the timing of cell division. Certain features of the control have been found to be common to a variety of eukaryotes. In particular, the importance of cell size as a parameter affecting cell cycle progress has been reported for mammalian cells(1,2) and for several single-celled eukaryotes(3-6). Another feature common to several systems is that growth conditions have a direct effect on the timing of division cycle events(7-9), and on cell size(9,10). In the fission yeast Schizosaccharomyces pombe, both cell size(6) and nutritional conditions(9) have been shown to affect cycle kinetics. The organism has been used extensively as a model eukaryotic system, largely because of the ease of measuring cell size and because division occurs by binary fission(11). More recently, its genetic tractability has led to the isolation of cell division cycle (cdc) mutants(12), and also of wee mutants altered in the control coordinating growth with the division cycle(13-15). The existence of such control mutants allows a more direct approach to the investigation of the molecular basis of division control, in contrast to the indirect methods used in other systems(4,16-18). wee mutants are so far unique to S. pombe. The most conspicuous property of wee mutants is their reduced cell size(13,14). Analysis of these mutants(15,19) and other evidence(9) has shown that control over cell division timing normally acts at entry to mitosis. As the function of a number of cdc genes is specifically required for mitosis(12), interactions between wee and cdc mutants which affect mitosis might be expected. I report here that the mitotic defect caused by a defective cdc25 allele is suppressed in wee mutants. Suppression by wee1 mutants is almost complete, while the wee2.1 mutation is a less effective suppressor. The significance of these findings for genetic models of the control of mitosis is considered.  相似文献   

7.
8.
Cell cycle is a programmed process, during which a cell proliferates to two daughter cells. The eukaryotic or-ganisms share the same characters, such as four cycle phases G1, S, G2 and M, the evolutionally conserved cell cycle proteins and its dependent kinases, and the check-points mechanism[1,2]. Due to the different functions and the complicated interactions of these proteins involved in cell cycle, it is very difficult to understand the regulatory mechanism of cell cycle in a whole sense …  相似文献   

9.
The gene for the U6 small nuclear RNA in fission yeast has an intron   总被引:34,自引:0,他引:34  
T Tani  Y Ohshima 《Nature》1989,337(6202):87-90
  相似文献   

10.
11.
A J Klar 《Nature》1987,326(6112):466-470
The two strands of the DNA molecule are complementary but not identical. Hence, upon semiconservative replication, different parental DNA strands are segregated to daughter cells. A molecular analysis suggests that the process of fission yeast mating-type interconversion uses asymmetry of the DNA strands to generate a regular lineage of cellular differentiation.  相似文献   

12.
Y Gachet  S Tournier  J B Millar  J S Hyams 《Nature》2001,412(6844):352-355
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).  相似文献   

13.
Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene   总被引:45,自引:0,他引:45  
I Hagan  M Yanagida 《Nature》1990,347(6293):563-566
The structure equivalent to higher eukaryotic centrosomes in fission yeast, the nuclear membrane-bound spindle pole body, is inactive during interphase. On transition from G2 to M phase of the cell cycle, the spindle pole body duplicates; the daughter pole bodies seed microtubules which interdigitate to form a short spindle that elongates to span the nucleus at metaphase. We have identified two loci which, when mutated, block spindle formation. The predicted product of one of these genes, cut7+, contains an amino-terminal domain similar to the kinesin heavy chain head domain, indicating that the cut7+ product could be a spindle motor. The cut7+ gene resembles the Aspergillus nidulans putative spindle motor gene bimC, both in terms of its organization with a homologous amino-terminal head and no obvious heptad repeats and in the morphology of the mutant phenotype. But we find no similarity between the carboxy termini of these genes, suggested that either the cut7+ gene represents a new class of kinesin genes and that fission yeast may in addition contain a bimC homologue, or that the carboxy termini of these mitotic kinesins are not evolutionarily conserved and that the cut7+ gene belongs to a subgroup of bimC-related kinesins.  相似文献   

14.
15.
S L Forsburg  P Nurse 《Nature》1991,351(6323):245-248
In rapidly growing cells of the budding yeast Saccharomyces cerevisiae, the cell cycle is regulated chiefly at Start, just before the G1-S boundary, whereas in the fission yeast Schizosaccharomyces pombe, the cycle is predominantly regulated at G2-M. Both control points are present in both yeasts, and both require the p34cdc2 protein kinase. At G2-M, p34cdc2 kinase activity in S. pombe requires a B-type cyclin in a complex with p34cdc2; this complex is the same as MPF (maturation promoting factor). The p34cdc2 activity at the G1-S transition in S. cerevisiae may be regulated by a similar cyclin complex, using one of the products of a new class of cyclin genes (CLN1, CLN2 and WHI1 (DAF1/CLN3)). At least one is required for progression through the G1-S phase, and deletion of all three leads to G1 arrest. WHI1 was isolated as a dominant allele causing budding yeast cells to divide at a reduced size and was later independently identified as DAF1, a dominant allele of which rendered the cells refractory to the G1-arrest induced by the mating pheromone alpha-factor. The dominant alleles are truncations thought to yield proteins of increased stability, and the cells are accelerated through G1. Without WHI1 function, the cells are hypersensitive to alpha-factor, enlarged and delayed in G1. Heretofore, this G1-class of cyclins has not been identified in other organisms. We have isolated a G1-type cyclin gene called puc1+ from S. pombe, using a functional assay in S. cerevisiae. Expression of puc1+ in S. pombe indicates that it has a cyclin-like role in the fission yeast distinct from the role of the B-type mitotic cyclin.  相似文献   

16.
Llewellyn ME  Barretto RP  Delp SL  Schnitzer MJ 《Nature》2008,454(7205):784-788
Sarcomeres are the basic contractile units of striated muscle. Our knowledge about sarcomere dynamics has primarily come from in vitro studies of muscle fibres and analysis of optical diffraction patterns obtained from living muscles. Both approaches involve highly invasive procedures and neither allows examination of individual sarcomeres in live subjects. Here we report direct visualization of individual sarcomeres and their dynamical length variations using minimally invasive optical microendoscopy to observe second-harmonic frequencies of light generated in the muscle fibres of live mice and humans. Using microendoscopes as small as 350 microm in diameter, we imaged individual sarcomeres in both passive and activated muscle. Our measurements permit in vivo characterization of sarcomere length changes that occur with alterations in body posture and visualization of local variations in sarcomere length not apparent in aggregate length determinations. High-speed data acquisition enabled observation of sarcomere contractile dynamics with millisecond-scale resolution. These experiments point the way to in vivo imaging studies demonstrating how sarcomere performance varies with physical conditioning and physiological state, as well as imaging diagnostics revealing how neuromuscular diseases affect contractile dynamics.  相似文献   

17.
C E Alfa  B Ducommun  D Beach  J S Hyams 《Nature》1990,347(6294):680-682
Cyclins, as subunits of the protein kinase encoded by the cdc2 gene are major controlling elements of the eukaryotic cell cycle. The fission yeast Schizosaccharomyces pombe has a B-type cyclin, which is a nuclear protein encoded by the cdc13 gene. Here we demonstrate the presence of two spatially distinct cdc13 cyclin populations in the nucleus of S. pombe, one of which is associated with the mitotic spindle poles. Both populations colocalize with the product of the cdc2 gene (p34cdc2). Treatment of cells with the antimicrotubule drug thiabendazole prevents cyclin degradation and blocks the tyrosine dephosphorylation and activation of cdc2. These results suggest a key regulatory role of the cdc2-cyclin complex in the initiation of mitotic spindle formation and also that mitotic microtubule function is required for cdc2 activation.  相似文献   

18.
I Hagan  M Yanagida 《Nature》1992,356(6364):74-76
Several mitotic and meiotic gene products are related to the microtubule motor kinesin, providing insight into the molecular basis of the complex motile events responsible for spindle formation and function. Of these genes, three have been shown to affect spindle structure when mutated. The most severe phenotype is seen in Aspergillus nidulans bimC and Schizosaccharomyces pombe cut7 mutants. In both fungi the intranuclear spindle is bipolar, with microtubules that emanate from spindle pole bodies at either pole, interdigitating in a central overlap zone. In bimC and cut7 mutants, microtubule interdigitation does not appear to take place, instead two unconnected half spindles form and chromosome separation fails. Here we report that cut7 protein concentrates on or near the spindle pole bodies throughout mitotic and meiotic nuclear division and associates with mitotic spindle microtubules in a stage-specific manner, associating with the mid-anaphase B midzone. In cut7ts mutants, spindle pole bodies stain but mitotic microtubules do not.  相似文献   

19.
The Cdt1 protein is required to license DNA for replication in fission yeast   总被引:18,自引:0,他引:18  
Nishitani H  Lygerou Z  Nishimoto T  Nurse P 《Nature》2000,404(6778):625-628
To maintain genome stability in eukaryotic cells, DNA is licensed for replication only after the cell has completed mitosis, ensuring that DNA synthesis (S phase) occurs once every cell cycle. This licensing control is thought to require the protein Cdc6 (Cdc18 in fission yeast) as a mediator for association of minichromosome maintenance (MCM) proteins with chromatin. The control is overridden in fission yeast by overexpressing Cdc18 (ref. 11) which leads to continued DNA synthesis in the absence of mitosis. Other factors acting in this control have been postulated and we have used a re-replication assay to identify Cdt1 (ref. 14) as one such factor. Cdt1 cooperates with Cdc18 to promote DNA replication, interacts with Cdc18, is located in the nucleus, and its concentration peaks as cells finish mitosis and proceed to S phase. Both Cdc18 and Cdt1 are required to load the MCM protein Cdc21 onto chromatin at the end of mitosis and this is necessary to initiate DNA replication. Genes related to Cdt1 have been found in Metazoa and plants (A. Whitaker, I. Roysman and T. Orr-Weaver, personal communication), suggesting that the cooperation of Cdc6/Cdc18 with Cdt1 to load MCM proteins onto chromatin may be a generally conserved feature of DNA licensing in eukaryotes.  相似文献   

20.
Sato M  Toda T 《Nature》2007,447(7142):334-337
Microtubules are essential intracellular structures involved in several cellular phenomena, including polarity establishment and chromosome segregation. Because the nuclear envelope persists during mitosis (closed mitosis) in fission yeast (Schizosaccharomyces pombe), cytoplasmic microtubules must be reorganized into the spindle in the compartmentalized nucleus on mitotic entry. An ideal mechanism might be to take advantage of an evolutionarily conserved microtubule formation system that uses the Ran-GTPase nuclear transport machinery, but no targets of Ran for spindle formation have been identified in yeast. Here we show that a microtubule-associated protein, Alp7, which forms a complex with Alp14, is a target of Ran in yeast for spindle formation. The Ran-deficient pim1 mutant (pim1-F201S) failed to show mitosis-specific nuclear accumulation of Alp7. Moreover, this mutant exhibited compromised spindle formation and early mitotic delay. Importantly, these defects were suppressed by Alp7 that was artificially targeted to the nucleus by a Ran-independent and importin-alpha-mediated system. Thus, Ran targets Alp7-Alp14 to achieve nuclear spindle formation, and might differentiate its targets depending on whether the organism undergoes closed or open mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号