首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shalitin D  Yang H  Mockler TC  Maymon M  Guo H  Whitelam GC  Lin C 《Nature》2002,417(6890):763-767
Cryptochromes are blue/ultraviolet-A light receptors that mediate various light responses in plants and animals. But the initial photochemical reaction of cryptochrome is still unclear. For example, although most photoreceptors are known to undergo light-dependent protein modification such as phosphorylation, no blue-light dependent phosphorylation has been reported for a cryptochrome. Arabidopsis cryptochrome 2 (cry2) mediates light regulation of seedling development and photoperiodic flowering. The physiological activity and cellular level of cry2 protein are light-dependent, and protein protein interactions are important for cry2 function. Here we report that cry2 undergoes a blue-light-dependent phosphorylation, and that cry2 phosphorylation is associated with its function and regulation. Our results suggest that, in the absence of light, cry2 remains unphosphorylated, inactive and stable; absorption of blue light induces the phosphorylation of cry2, triggering photomorphogenic responses and eventually degradation of the photoreceptor.  相似文献   

2.
3.
Phot1 and phot2 mediate blue light regulation of stomatal opening.   总被引:36,自引:0,他引:36  
T Kinoshita  M Doi  N Suetsugu  T Kagawa  M Wada  K Shimazaki 《Nature》2001,414(6864):656-660
The stomatal pores of higher plants allow for gaseous exchange into and out of leaves. Situated in the epidermis, they are surrounded by a pair of guard cells which control their opening in response to many environmental stimuli, including blue light. Opening of the pores is mediated by K(+) accumulation in guard cells through a K(+) channel and driven by an inside-negative electrical potential. Blue light causes phosphorylation and activation of the plasma membrane H(+)-ATPase that creates this potential. Thus far, no blue light receptor mediating stomatal opening has been identified, although the carotenoid, zeaxanthin, has been proposed. Arabidopsis mutants deficient in specific blue-light-mediated responses have identified four blue light receptors, cryptochrome 1 (cry1), cryptochrome 2 (cry2), phot1 and phot2. Here we show that in a double mutant of phot1 and phot2 stomata do not respond to blue light although single mutants are phenotypically normal. These results demonstrate that phot1 and phot2 act redundantly as blue light receptors mediating stomatal opening.  相似文献   

4.
Cryptochrome mediates light-dependent magnetosensitivity in Drosophila   总被引:3,自引:0,他引:3  
Gegear RJ  Casselman A  Waddell S  Reppert SM 《Nature》2008,454(7207):1014-1018
Although many animals use the Earth's magnetic field for orientation and navigation, the precise biophysical mechanisms underlying magnetic sensing have been elusive. One theoretical model proposes that geomagnetic fields are perceived by chemical reactions involving specialized photoreceptors. However, the specific photoreceptor involved in such magnetoreception has not been demonstrated conclusively in any animal. Here we show that the ultraviolet-A/blue-light photoreceptor cryptochrome (Cry) is necessary for light-dependent magnetosensitive responses in Drosophila melanogaster. In a binary-choice behavioural assay for magnetosensitivity, wild-type flies show significant naive and trained responses to a magnetic field under full-spectrum light ( approximately 300-700 nm) but do not respond to the field when wavelengths in the Cry-sensitive, ultraviolet-A/blue-light part of the spectrum (<420 nm) are blocked. Notably, Cry-deficient cry(0) and cry(b) flies do not show either naive or trained responses to a magnetic field under full-spectrum light. Moreover, Cry-dependent magnetosensitivity does not require a functioning circadian clock. Our work provides, to our knowledge, the first genetic evidence for a Cry-based magnetosensitive system in any animal.  相似文献   

5.
Ethylene regulates many aspects of growth, development and responses to environmental stresses in plants. Its signaling pathway has been established in model dicotyledonous plant Arabidopsis. However, its roles and signal transduction in monocotyledous rice plant remain largely unknown. In this review, we summarize the current advances in rice ethylene signaling studies and compare these with the results from Arabidopsis and other plants. Most of the components homologous to those in Arabidopsis ethylene signaling pathway have been found in rice, including five ethylene receptors, OsEIN2, OsEIL1, and OsERFs. Rice ethylene receptors are functionally more divergent than that of Arabidopsis. OsEIN2 and OsEIL1 display limited roles in regulation of rice ethylene responses compared with their Arabidopsis orthologs. ERF-like proteins OsERF1 and OsEBP-89 appear to be involved in rice ethylene signaling. However, whether they are activated through OsEIN2 and OsEIL1-mediated pathway needs further studies. Given that rice uses ethylene to control many processes that do not exist in Arabidopsis, it seems that new components or new mechanisms may exist in rice ethylene signaling pathway.  相似文献   

6.
An Arabidopsis circadian clock component interacts with both CRY1 and phyB   总被引:17,自引:0,他引:17  
Jarillo JA  Capel J  Tang RH  Yang HQ  Alonso JM  Ecker JR  Cashmore AR 《Nature》2001,410(6827):487-490
  相似文献   

7.
Regulation of flowering time by light quality   总被引:37,自引:0,他引:37  
Cerdán PD  Chory J 《Nature》2003,423(6942):881-885
The transition to flowering in plants is regulated by environmental factors such as temperature and light. Plants grown under dense canopies or at high density perceive a decrease in the ratio of red to far-red incoming light. This change in light quality serves as a warning of competition, triggering a series of responses known collectively as the 'shade-avoidance syndrome'. During shade avoidance, stems elongate at the expense of leaf expansion, and flowering is accelerated. Of the five phytochromes-a family of red/far-red light photoreceptors-in Arabidopsis, phytochrome B (phyB) has the most significant role in shade-avoidance responses, but the mechanisms by which phyB regulates flowering in response to altered ratios of red to far-red light are largely unknown. Here we identify PFT1 (PHYTOCHROME AND FLOWERING TIME 1), a nuclear protein that acts in a phyB pathway and induces flowering in response to suboptimal light conditions. PFT1 functions downstream of phyB to regulate the expression of FLOWERING LOCUS T (FT), providing evidence for the existence of a light-quality pathway that regulates flowering time in plants.  相似文献   

8.
Molecular basis of seasonal time measurement in Arabidopsis   总被引:36,自引:0,他引:36  
Yanovsky MJ  Kay SA 《Nature》2002,419(6904):308-312
  相似文献   

9.
10.
植物盐胁迫的信号传导途径   总被引:2,自引:0,他引:2  
植物耐盐性研究具有重要意义.近年来,植物盐胁迫信号传导途径一直是植物耐盐性研究的热点.目前已阐明的盐胁迫信号传导途径有酵母和植物中的MAPK(mitogen-actirated protein kinase)途径、拟南芥中缓解离子胁迫的SOS(salt overIy sensitive)途径以及其他蛋白激酶参与的信号传导途径,其中包括钙依赖而钙调素不依赖的蛋白激酶、受体蛋白激酶、糖原合成酶的激酶和组蛋白激酶.因此,植物的耐盐性是个非常复杂的问题,可能是由多种信号分子参与的网络体系.大量转基因实验证明,信号传导途径中的某些组分可改善植物的耐盐性.因此,深入研究植物的盐胁迫信号传导是提高植物耐盐性的前提和基础.  相似文献   

11.
A new role for cryptochrome in a Drosophila circadian oscillator   总被引:4,自引:0,他引:4  
Krishnan B  Levine JD  Lynch MK  Dowse HB  Funes P  Hall JC  Hardin PE  Dryer SE 《Nature》2001,411(6835):313-317
Cryptochromes are flavin/pterin-containing proteins that are involved in circadian clock function in Drosophila and mice. In mice, the cryptochromes Cry1 and Cry2 are integral components of the circadian oscillator within the brain and contribute to circadian photoreception in the retina. In Drosophila, cryptochrome (CRY) acts as a photoreceptor that mediates light input to circadian oscillators in both brain and peripheral tissue. A Drosophila cry mutant, cryb, leaves circadian oscillator function intact in central circadian pacemaker neurons but renders peripheral circadian oscillators largely arrhythmic. Although this arrhythmicity could be caused by a loss of light entrainment, it is also consistent with a role for CRY in the oscillator. A peripheral oscillator drives circadian olfactory responses in Drosophila antennae. Here we show that CRY contributes to oscillator function and physiological output rhythms in the antenna during and after entrainment to light-dark cycles and after photic input is eliminated by entraining flies to temperature cycles. These results demonstrate a photoreceptor-independent role for CRY in the periphery and imply fundamental differences between central and peripheral oscillator mechanisms in Drosophila.  相似文献   

12.
溶解素基序(LysM)是在多种蛋白质中普遍存在的结构域.植物LysM蛋白能够感知几丁质及其寡糖等分子配体,从而启动植物对病原菌的免疫反应.在水稻、拟南芥等植物免疫应答过程中,LysM蛋白作为一种重要的模式识别受体,通过不同形式的寡聚化,激活多种类受体胞质激酶及其下游的MAPK(mitogen activated protein kinase)级联反应传递信号.同时,蛋白质可逆磷酸化和蛋白质降解途径可以负调节LysM蛋白介导的防御信号转导.文章综述了植物免疫过程中LysM蛋白介导的信号转导分子机制.  相似文献   

13.
Phytochrome signalling is mediated through nucleoside diphosphate kinase 2.   总被引:24,自引:0,他引:24  
G Choi  H Yi  J Lee  Y K Kwon  M S Soh  B Shin  Z Luka  T R Hahn  P S Song 《Nature》1999,401(6753):610-613
Because plants are sessile, they have developed intricate strategies to adapt to changing environmental variables, including light. Their growth and development, from germination to flowering, is critically influenced by light, particularly at red (660 nm) and far-red (730 nm) wavelengths. Higher plants perceive red and far-red light by means of specific light sensors called phytochromes(A-E). However, very little is known about how light signals are transduced to elicit responses in plants. Here we report that nucleoside diphosphate kinase 2 (NDPK2) is an upstream component in the phytochrome signalling pathway in the plant Arabidopsis thaliana. In animal and human cells, NDPK acts as a tumour suppressor. We show that recombinant NDPK2 in Arabidopsis preferentially binds to the red-light-activated form of phytochrome in vitro and that this interaction increases the activity of recombinant NDPK2. Furthermore, a mutant lacking NDPK2 showed a partial defect in responses to both red and farred light, including cotyledon opening and greening. These results indicate that NDPK2 is a positive signalling component of the phytochrome-mediated light-signal-transduction pathway in Arabidopsis.  相似文献   

14.
Yang X  Ren Z  Kuk J  Moffat K 《Nature》2011,479(7373):428-432
Light is a fundamental signal that regulates important physiological processes such as development and circadian rhythm in living organisms. Phytochromes form a major family of photoreceptors responsible for red light perception in plants, fungi and bacteria. They undergo reversible photoconversion between red-absorbing (Pr) and far-red-absorbing (Pfr) states, thereby ultimately converting a light signal into a distinct biological signal that mediates subsequent cellular responses. Several structures of microbial phytochromes have been determined in their dark-adapted Pr or Pfr states. However, the structural nature of initial photochemical events has not been characterized by crystallography. Here we report the crystal structures of three intermediates in the photoreaction of Pseudomonas aeruginosa bacteriophytochrome (PaBphP). We used cryotrapping crystallography to capture intermediates, and followed structural changes by scanning the temperature at which the photoreaction proceeded. Light-induced conformational changes in PaBphP originate in ring D of the biliverdin (BV) chromophore, and E-to-Z isomerization about the C(15) = C(16) double bond between rings C and D is the initial photochemical event. As the chromophore relaxes, the twist of the C(15) methine bridge about its two dihedral angles is reversed. Structural changes extend further to rings B and A, and to the surrounding protein regions. These data indicate that absorption of a photon by the Pfr state of PaBphP converts a light signal into a structural signal via twisting and untwisting of the methine bridges in the linear tetrapyrrole within the confined protein cavity.  相似文献   

15.
Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.  相似文献   

16.
The ELF3 zeitnehmer regulates light signalling to the circadian clock   总被引:24,自引:0,他引:24  
McWatters HG  Bastow RM  Hall A  Millar AJ 《Nature》2000,408(6813):716-720
The circadian system regulates 24-hour biological rhythms and seasonal rhythms, such as flowering. Long-day flowering plants like Arabidopsis thaliana, measure day length with a rhythm that is not reset at lights-off, whereas short-day plants measure night length on the basis of circadian rhythm of light sensitivity that is set from dusk, early flowering 3 (elf3) mutants of Arabidopsis are aphotoperiodic and exhibit light-conditional arrhythmias. Here we show that the elf3-7 mutant retains oscillator function in the light but blunts circadian gating of CAB gene activation, indicating that deregulated phototransduction may mask rhythmicity. Furthermore, elf3 mutations confer the resetting pattern of short-day photoperiodism, indicating that gating of phototransduction may control resetting. Temperature entrainment can bypass the requirement for normal ELF3 function for the oscillator and partially restore rhythmic CAB expression. Therefore, ELF3 specifically affects light input to the oscillator, similar to its function in gating CAB activation, allowing oscillator progression past a light-sensitive phase in the subjective evening. ELF3 provides experimental demonstration of the zeitnehmer ('time-taker') concept.  相似文献   

17.
18.
Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.  相似文献   

19.
Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling   总被引:1,自引:0,他引:1  
Yoo SD  Cho YH  Tena G  Xiong Y  Sheen J 《Nature》2008,451(7180):789-795
  相似文献   

20.
The two-component signaling system has been studied in bacteria. It takes part in signal transduction of adaptive behavior. Recent studies have shown that a similar two-component system is also present in eukaryotes. Examples of this areETRl andCKLl genes which may involve the signal transduction of plant hormone ethylene and cytokinin respectively. The cloning and characterization of a novel gene (NTHKl) fragment from tobacco are presented. Its partial sequence codes for a product which shows similarity to many two-component signaling proteins. Southern blot analysis indicated that there are 2 to 3 copies ofNTHKl gene in tobacco genome (allotetraploid). Homologous genes may also exist in other plants such as Arabidopsis, soybean and spinach. The expression ofNTHKl gene has also been analyzed in tobacco. Further studies on the isolation of full-length cDNA ofNTHKl gene will elucidate more clearly its function in signal perception and transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号