首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 546 毫秒
1.
域上2×2对称矩阵空间的加法秩保持   总被引:5,自引:2,他引:3  
令F是一个域,n是一个正整数.Sn(F)记F上所有n×n对称矩阵的集合.若一个算子fSn(F)→Sn(F)满足对任意的A,B∈Sn(F)都有f(A+B)=f(A)+f(B),则称之为加法的;若对任意的X∈Sn(F)都有rankf(X)=rankX,则称f为Sn(F)上的秩保持.当n≥3及F为任意域时,Sn(F)上的所有加法秩保持已被作者在[4]中确定.这里,对于任意的F,S2(F)上所有的满足对每个X∈S2(F)\{xD12|x∈F\{0}}都有rankf(X)=rankX的加法算子的一般形式被确定,由此S2(F)上的所有加法秩保持被刻划.  相似文献   

2.
矩阵空间之间的秩的线性保持   总被引:1,自引:0,他引:1  
设m,n是正整数,n≥2,F是包含至少三个元素的域.Mn(F)记F上所有n阶矩阵构成的线性空间,Sn(F)记F上所有n阶对称矩阵构成的线性空间.设V和W是Mn(F)的两个子空间.如果线性算子fV→W满足rankf(X)=rankX对于所有的X∈V成立,则称f是从V到W的秩的线性保持.证明了f是从Sn(F)到Mm(F)的秩的线性保持的充分必要条件是n≤m且存在非奇异矩阵U,V∈Mm(F)满足f(A)=U(A+0)V对于所有的A∈Sn(F)成立.由此,确定了所有的从Sn(F)到Sm(F)及从Mn(F)到Mm(F)的秩的线性保持的一般形式.  相似文献   

3.
设Sm是复数域?上m×m对称矩阵全体.线性映射φ:Sm(×)Sn→Smn保持矩阵张量积秩,即rankφ(A(×)B)=rank(A(×)B),?A∈Sm,B∈Sn当且仅当存在可逆阵P∈Mmn使得φ(X)=PXPt,?X∈Sm(×)Sn.本文是对矩阵张量积空间上的线性保持问题的补充和发展.  相似文献   

4.
域上迹零矩阵空间上的线性秩1保持(英文)   总被引:1,自引:1,他引:0  
设F是域,m≥2是正整数,Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间.若线性映射φ:slm(F)→slm(F) 满足φ(sl1m(F))(-C)sl1m(F),则称其为线性秩1保持,其中sl1m(F)定义slm(F)的包含所有秩1矩阵的子集.通过使用数学归纳法证明了:φ:slm(F)→slm(F)是可逆的线性秩l保持的充要条件是存在c ∈F* 和可逆的M ∈Mm(F)使得φ(X)=cMXM-1,(A)X∈slm(F)或φ(X)=cMXT M-1,(A)X ∈slm(F).  相似文献   

5.
设F是一个特征2的域,n≥2,Mn(F)和Sn(F)分别为F上的n×n全矩阵空间与对称矩阵空间.刻画了Sn(F)到Mn(F)上的保矩阵M-P逆的线性单射,由此又得到了Sn(F)到自身的保矩阵M-P逆的可逆的线性算子的形式,最后还刻画了Mn(F)到自身的保M-P逆的线性算子.  相似文献   

6.
设Kn(F)是域F上所有n×n交错矩阵构成的线性空间.如果一个算子f:Kn(F)→Kn(F)满足对所有的A,B∈Kn(F)有f(A+B)=f(A)+f(B)并且对任意的X∈Kn(F)有rankf(X)=rankX,则称f是Kn(F)上的加法秩保持.当n是不小于4的整数且F任意时,证明了f是Kn(F)上的加法秩保持当且仅当存在非零的纯量γ、非奇异的n×n矩阵P和域F的单自同态δ满足或者f:[aij]|→αP[aijδ]PT,或者n=4且f:[aij]|→αP([aiδj])PT,其中:K4(F)→K4(F)表示对换(1,4)和(2,3)位置元素及(4,1)和(3,2)位置元素的算子.  相似文献   

7.
域上对称矩阵空间上的保逆线性映射   总被引:2,自引:1,他引:1  
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射.  相似文献   

8.
设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射.  相似文献   

9.
设F是一个域,Mn(F)是域F上的n×n矩阵空间,Sn(F)是Mn(F)中对称矩阵的全体.对Mn(F)中的任一线性子空间V,记IV为V中所有幂等元的集合.设V∈{Sn(F),Mn(F)},对任意的A,B∈V和λ∈F,如果A-λB幂等当且仅当Φ(A)-λΦ(B)幂等,则称映射Φ:V→V是保幂等性的.证明了:如果F的特征为0,Φ:Sn(F)→Sn(F),则Φ是一个保幂性映射当且仅当存在Mn(F)中的一个可逆阵P使得对Sn(F)中的每一个A都有Φ(A)=PAP-1,其中P满足PtP=aIn,a为F中的一个非零元.  相似文献   

10.
设F是一个特征不为2的域,Mn(F)是F上的n×n全矩阵空间,称映射T:Mn(F)→Mn(F)保持极小秩,如果mr(T(A))=mr(A),(Y)A∈Mn(F).刻画了同时保持极小秩和某一非奇异双线性函数的变换T的形式.  相似文献   

11.
2×2矩阵代数保持幂等的映射   总被引:2,自引:0,他引:2  
令M2是特征为2且元素个数大于2的域上的2×2矩阵代数.令P2记M2中幂等阵全体的集合,设φ是从M2到M2的单映射且满足由A-λB∈P2可以推出φ(A)-λφ(B)∈P2.则φ的形式是φ(A)=TAT-1 A∈M2或者φ(A)=TAtT-1 A∈M2其中T是M2中的某个非奇异阵.  相似文献   

12.
域上保持m×n秩1矩阵的函数   总被引:2,自引:0,他引:2  
设F是任意的域,m,n是整数,m,n≥2.对于一个函数f:F→F和F上的一个矩阵A=[aij],用符号Af定义矩阵[f(aij)].如果秩Af=1对F上所有的m×n秩1矩阵A成立,则称f保持m×n秩1矩阵.刻画了F上所有保持m×n秩1矩阵的函数的一般形式.这推广了最近的文献Kalinowski[1,2]中的结论.  相似文献   

13.
为了进一步整合线性代数的内容,利用分块矩阵与λ-多项式理论对子块为矩阵多项式的矩阵的秩进行系统的论述.得到的主要结论:设B(λ)∈F[λ]s×t,A∈F n×n,则rank(B(A))=rank(h1(A))++rank(hr(A)),其中:r=rank(B(λ));h1(λ),,hr(λ)∈F[λ]为任意非零多项式,且h1(λ),,hr(λ)的标准分解式中不可约因子的方幂构成B(λ)的全部初等因子.  相似文献   

14.
设F是一个特征不为2的域,Tn(F)是域F上所有n×n的可逆上三角矩阵组成的群。首先利用矩阵的运算技巧研究了Tn(F)的所有幺幂正规子群的结构,对Tn(F)的任意一个幺幂正规子群给出了一个完全的刻画,即每一个幺幂正规子群都可以由一个元素来生成;然后借助可逆映射在生成元上的作用方式,给出了可逆上三角矩阵群上保幺幂正规子群的双射的具体表达式。  相似文献   

15.
确定了具有任意特征的有限域上一类Chevalley群的Borel子群(?)的自同构,并且证明了(?)的自同构群是有限可解完全群。  相似文献   

16.
域上保秩1矩阵映射   总被引:1,自引:0,他引:1  
设K是域,m,n是不小于2的整数,Mmn(K)表示K上m×n阶矩阵全体所成集合.设Φij(i=1,2,…,m,j=1,2,…,n)是K上的映射,定义K上由Φij导出的映射Φ如下:Φ:[aij]|→[Φij(aij)],[aij]∈Mmn(K).若Φ将Mmn(K)中的秩1矩阵都映成秩1矩阵,则称Φ是保秩1的,将刻画这种映射的形式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号