共查询到20条相似文献,搜索用时 0 毫秒
1.
分析与处理大坝变形监测资料对于大坝安全运行意义重大.支持向量机(SVM)能够有效解决高维数的非线性问题,并且具有良好的泛化能力.以SVM理论为基础,建立大坝变形监测模型,并在此基础上研究其改进方法.改进思路为充分利用马尔科夫链适用于原始监测数据波动大的优势,对其残差进行处理;同时考虑到核参数和惩罚因子的选择对SVM模型有很大影响,采用改进粒子群算法对其参数进行寻优.通过实例分析比较各种改进方法,结果表明,提出的对SVM模型的改进方法可以提高预测的泛化能力及精度. 相似文献
2.
拱坝已成为大型水利枢纽的主要坝型之一,大坝变形预测是大坝安全监控的重要内容,预测分析的难点之一在于变形监测数据往往具有复杂的非线性特点.支持向量机(SVM)具有良好的泛化能力,可有效地解决小样本、非线性、高维数等问题,因此可将其广泛应用于拱坝变形观测中.由于算法的成功与否很大程度上取决于其参数的选取,本文充分利用粒子群算法快速全局优化的特点,采用粒子群算法来优化支持向量机的模型参数,建立了基于PSO—SVM的大坝变形预测模型.将该模型应用于某拱坝坝基变形预测中,与传统的多元回归模型预测结果进行对比.结果表明,PSO—SVM模型用于拱坝变形预测是可行的. 相似文献
3.
深入分析了线损率的影响因素,对现存的线损率预测方法进行了研究,采用粒子群算法对支持向量机进行参数寻优,建立基于粒子群优化的支持向量机预测模型对理论线损率进行预测仿真,为线损的降低和电能的高效利用提供保障;最后通过实例验证了该模型在理论线损率预测中的精度. 相似文献
4.
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。 相似文献
5.
6.
大坝变形预测是风险评估的关键,而涉及因素存在高度非线性.为达到好的预测效果,提出了一种基于最小二乘支持向量机(LSSVM)的大坝变形预测方法.在数据预处理方面,针对传统的参数平方、立方这种处理方式,提出变阶次概念;针对LSSVM交叉验证耗时过多,提出了一种简单可行的变参数方法 .为了快速获得优化结果,引入基于十进制的遗传算法.此外,为进一步提高预测精度,引入遗忘因子概念.最后,给出一个实例. 相似文献
7.
边坡稳定性与其影响因素之间存在着复杂的非线性关系.结合粒子群优化算法和支持向量机,提出了边坡稳定评价的粒子群优化支持向量机模型.模型采用支持向量机建立边坡稳定性和影响因素之间的非线性关系;同时,利用粒子群算法对支持向量机参数进行全局寻优,从而确保了模型参数的准确性.模型的测试结果显示了良好的精度.将该模型应用到某岩石高边坡中,预测结果与实际情况符合较好,表明该模型在岩石边坡稳定性预测中的可行性和有效性. 相似文献
8.
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.080 9 mm2,均方根误差为0.283 8 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 相似文献
9.
10.
针对葡萄酒的物理化学成分冗余数据,提出了一种基于主成分分析(PCA)和粒子群优化—支持向量机(PSO-SVM)的模型用于葡萄酒的分类.首先,对葡萄酒的物理化学成分进行主成分分析,提取主要影响因素,减少输入维数,再利用粒子群优算法寻找支持向量机的最佳参数,并用支持向量机完成对训练集样本的学习和测试集样本的预测分类.结果表明,该模型与其他模型相比较,具有较高的准确性,有一定的适用价值. 相似文献
11.
在数据挖掘中,支持向量机是被广泛应用的一种分类算法,其核函数的选择及参数的设定没有有效的标准。本文采用混合核函数构造兼顾学习能力和泛化性能的支持向量机算法,并利用粒子群算法来确定支持向量机的参数。应用基于混合核函数的PSO-SVM算法对一个经典的分类测试数据集进行分类,将该算法与单一核函数支持向量机算法的分类结果进行比较,结果表明所提出的算法的分类性能有明显提升。 相似文献
12.
基于PSO-SVM的某型潜射导弹武器系统效能评估 总被引:1,自引:0,他引:1
分析了某型潜射导弹武器系统的战术、技术指标,利用粒子群算法对支持向量机的参数进行了优化,提出了一种基于PSO-SVM的某型潜射导弹武器系统效能评估方法,介绍了该方法在武器系统效能评估中的具体应用,并以仿真计算的方法对得出的武器系统效能评估方法进行了验证。 相似文献
13.
为分析深基坑在开挖过程中的变形规律,为安全生产提供有效信息,采用最小二乘支持向量机理论,利用粒子群算法对支持向量机的核参数进行优化,建立深基坑水平位移预测模型,并将预测结果与实际监测结果进行对比.研究结果表明:优化后的最小二乘支持向量机模型收敛速度快,泛化能力强,预测结果与实际监测数据有很好的一致性,精度高于传统的预测模型,对深基坑安全监控有一定的实用价值. 相似文献
14.
针对故障轴承信号的非线性、非高斯性,提出了一种基于双谱和纠错编码支持向量机(error-correcting output codes support vector machine,ECOC-SVM)的滚动轴承故障诊断方法。使用故障轴承振动信号双谱特征构造特征向量,在SVM的训练过程中,使用微粒群算法(particleswarm optimization,PSO)对支持向量机的参数进行优化。实验结果表明该方法能获得较高分类准确率。 相似文献
15.
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer, Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine, PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 相似文献
16.
基于支持向量回归机和粒子群算法的改进协同优化方法 总被引:1,自引:0,他引:1
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,... 相似文献
17.
大坝变形监测的BP网络模型与预报研究 总被引:31,自引:0,他引:31
建立有效实用的大坝安全监测模型,对于馆控大坝运行意义重大。针对目前国内外常用统计模型、确定性模型等的不足,提出将基于误差逆传播算法的BP神经网络模型用于大坝变形监测数据的拟合分析及其预测预报研究,最后以福建水口混凝土重力坝变形监测为例,对坝顶垂直位移实测值建立了BP网络模型,并将模型用于坝顶垂直位移预报,结果表明,BP网络模型的拟合和预报精度明显优于相应的统计模型。 相似文献
18.
为提高锂电池荷电状态(SOC)的估算精度,提出一种改进粒子群优化(PSO)算法;对最小二乘支持向量机(LSSVM)的惩罚参数C和核函数参数σ进行寻优,建立基于改进PSO-LSSVM的锂电池SOC估算模型.对磷酸铁锂充放电实验数据进行仿真分析,结果表明:改进PSO-LSSVM模型的平均相对误差为2.96%,均方根误差为0.018,全局最大相对误差为4.79%;改进PSO-LSSVM模型明显提高锂电池SOC估算精度. 相似文献
19.
《信阳师范学院学报(自然科学版)》2017,(4):642-646
针对MIMLSVM算法预测精度不高的问题,设计了一种新的基于改进MIMLSVM预测蛋白质功能模型.首先,采用改进的Hausdorff方法计算包之间的空间距离,并结合K-Medoids方法将MIML(多示例多标签)问题退化为多标签问题,以提高预测精度;然后,利用SVM算法将多标签问题转化为多个独立的二分类问题,结合蛋白质数据的特点,建立蛋白质功能预测模型,并利用粒子群算法优化模型参数;最后,通过对7种生物蛋白质功能预测的实验,证明所建模型的优越性. 相似文献
20.
光伏阵列故障的精确检测是提高光伏电站运行可靠性和安全性的重要因素之一。本文提出了粒子群优化支持向量机(Particle Swarm Optimization-Support Vector Machine, PSO-SVM)的光伏阵列故障检测与分类的方法。分析了光伏阵列输出特性和故障类型,选择合适的特征向量及归一化方式。选用径向基核函数优化模型结构,并利用PSO算法对参数进行寻优,提高模型精确度。结合实验平台,获取光伏阵列正常工作和8种故障状态的实测数据,随机划分为训练集和测试集,并建立PSO-SVM故障检测与分类模型。实验表明应用本文模型进行故障检测准确率达99.89%,分类准确率达98.68%,优于BP (Back Propagation)神经网络以及决策树的检测和分类结果。 相似文献