首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
H Takagi  H Shiomi  H Ueda  H Amano 《Nature》1979,282(5737):410-412
It is generally accepted that morphine exerts its analgesic effect by binding to specific opiate receptors in the brain and spinal cord. Since Hughes et al. isolated and identified two endogenous pentapeptides, Met- and Leu-enkephalin, from the brain and found that they acted as agonists at opiate receptors, alpha-, beta- and gamma-endorphins, larger peptides than enkephalins and having morphine-like activity, have been identified in either the brain or pituitary of various species. Several studies have demonstrated that enkephalins possess analgesic properties and that they are distributed in the pain-mediated pathways in the central nervous system. These findings suggest that enkephalins are important neurotransmitters or neuromodulators regulating pain transmission. We now report the isolation of a novel substance which has a Met-enkephalin releasing action. Our findings suggest the possibility of a regulating mechanism for the release of endogenous opioid peptides, especially Met-enkephalin.  相似文献   

2.
J Rossier  Y Audigier  N Ling  J Cros  S Udenfriend 《Nature》1980,288(5786):88-90
The enkephalins Met-enkephalin and Leu-enkephalin were first isolated from porcine brain by Hughes and co-workers. We have recently isolated from bovine adrenals another enkephalin with the structure Tyr-Gly-Gly-Phe-Met-Arg-Phe, or Met-enkephalin-Arg6-Phe7 (ref. 2). We report here that this new heptapeptide is found in human, rat and bovine striatum in concentrations comparable with or greater than that of Leu-enkephalin. This molecule should not be considered as a mere precursor of Met-enkephalin. A pharmacological study indicates that this naturally occurring enkephalin has similar properties to the two enkephalins characterized earlier.  相似文献   

3.
L I Larsson  S Childers  S H Snyder 《Nature》1979,282(5737):407-410
A pair of pentapeptides, Met- and Leu-enkephalin were recently isolated from brain tissue. The two peptides seem to represent endogenous opiate receptor ligands and have by immunocytochemical and radioimmunoassay studies been shown to occur in an extensive system of cerebral and peripheral nerves. The relative proportions between Met- and Leu-enkephalin varies between different brain regions and also between different species, suggesting the existence of separate populations of Met- and Leu-enkephalin nerves. Until now, however, immunocytochemistry has given no support for this notion. We report here evidence of separate populations of Met- and Leu-enkephalin nerves.  相似文献   

4.
N Zamir  M Palkovits  E Weber  E Mezey  M J Brownstein 《Nature》1984,307(5952):643-645
The amino acid sequence of the opioid peptide Leu-enkephalin is found within several larger peptides, which are generated from the precursors proenkephalin and prodynorphin. Proenkephalin contains four copies of the sequence of Met-enkephalin, a single copy of the sequence of Leu-enkephalin and one copy each of two extended Met-enkephalin sequences. Proenkephalin contains three peptides--alpha-neo-endorphin, dynorphin A and dynorphin B--the N-terminal sequences of which are identical to that of Leu-enkephalin. There is good evidence that the large amounts of Leu-enkephalin found in the adrenal medulla are generated from the precursor proenkephalin, but as yet prodynorphin has not been shown to be processed to yield Leu-enkephalin. We show here that the relatively high levels of Leu-enkephalin found in the rat substantia nigra are supplied by striatonigral axons and generated from the precursor prodynorphin.  相似文献   

5.
Evidence for opiate receptors on pituicytes   总被引:6,自引:0,他引:6  
S L Lightman  M Ninkovic  S P Hunt  L L Iversen 《Nature》1983,305(5931):235-237
A hypothalamo-neurohypophyseal enkephalinergic pathway has been described and the pars nervosa of the rat pituitary contains enkephalin-like material which may coexist in vasopressin and oxytocin terminals. At the level of the pars nervosa itself, stereospecific opiate receptors with properties very similar to those of brain receptors have been described, and opiates have been shown to inhibit the release of both vasopressin and oxytocin. The location of the opiate receptors involved has been presumed to be pre-terminal on the neurosecretory fibres. Using an autoradiographic technique to visualize opiate receptors, however, we now report that destruction of the neurosecretory fibres following pituitary stalk section does not result in a significant change in the neural lobe opiate receptor population. This suggests that the opiate receptors within the neural lobe may be present on pituicytes rather than on neurosecretory fibres.  相似文献   

6.
G J Martens  E Herbert 《Nature》1984,310(5974):251-254
The structures of the genes coding for the opioid peptide precursors proopiomelanocortin, proenkephalin (proenkephalin A) and prodynorphin (proenkephalin B), are known for some mammalian species. To gain insight into the evolutionary history of these precursors, we have examined the proenkephalin gene in the South African clawed toad, Xenopus laevis, which diverged from the principal line of vertebrate evolution some 350 Myr ago. The human proenkephalin gene consists of four exons, of which the main exon (exon IV) contains all known biologically active peptides--six Met-enkephalin sequences and one Leu-enkephalin sequence. We report here the primary structures of the putative main exons of two proenkephalin genes in X. laevis, each of which codes for seven Met-enkephalin sequences but no Leu-enkephalin, indicating that Met-enkephalin preceded Leu-enkephalin in the evolution of the proenkephalin gene. The organization of the main exons of the toad genes is remarkably similar to that of the human gene and conserved regions provide evidence for functionally significant structures. We also detect a polymorphism in one of the toad proenkephalin genes, mapping 1.5 kilobases (kb) 5' of the main exon; it is caused by an insertion/deletion of a 1-kb repetitive sequence which has the characteristics of a transposable element.  相似文献   

7.
Coffee contains potent opiate receptor binding activity   总被引:2,自引:0,他引:2  
Opiate receptor-active peptide fragments (exorphins) have been identified recently in casein and gluten hydrolysates, and morphine has been found in bovine and human milk. To determine whether similar peptides or alkaloids occur in other foodstuffs, we have screened potential sources using a rat brain homogenate assay to detect opiate receptor activity. We report here that instant coffee powders from a variety of manufacturers compete with tritiated naloxone for binding to opiate receptors in the rat brain membrane preparations, with no significant difference between normal and decaffeinated coffee. The receptor binding activity resembles that seen with opiate antagonists, in that there was no change in the half-maximal effective dose (ED50) in the presence of 100 mM Na+; on bioassay, the activity was similarly shown to be antagonistic and specific for opiate-induced inhibition of twitch. Preliminary characterization of the activity reveals that it has a molecular weight (MW) in the range 1,000-3,500, is heat-stable, ether-extractable, not modified by enzymatic digestion with papain, and clearly separable from caffeine and morphine on TLC. As its concentration in an average cup of coffee is five times the ED50, these data suggest that drinking coffee may be followed by effects mediated via opiate receptors, as well as effects of caffeine.  相似文献   

8.
Epidermal growth factor (EGF), through interaction with specific cell surface receptors, generates a pleiotropic response that, by a poorly defined mechanism, can induce proliferation of target cells. Subversion of the EGF mitogenic signal through expression of a truncated receptor may be involved in transformation by the avian erythroblastosis virus (AEV) oncogene v-erb-B, suggesting that similar EGF receptor defects may be found in human neoplasias. Overexpression of EGF receptors has been reported on the epidermoid carcinoma cell line A431, in various primary brain tumours and in squamous carcinomas. In A431 cells the receptor gene is amplified. Here we show that 4 of 10 primary brain tumours of glial origin which express levels of EGF receptors that are higher than normal also have amplified EGF receptor genes. Amplified receptor genes were not detected in the other brain tumours examined. Further analysis of EGF receptor defects may show that such altered expression and amplification is a particular feature of certain human tumours.  相似文献   

9.
Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin   总被引:60,自引:0,他引:60  
The nucleotide sequence of cloned cDNA for preproenkephalin from bovine adrenal medulla indicates that the precursor protein contains four copies of Met-enkephalin and one copy each of Leu-enkephalin, Met-enkephalin-Arg6-Phe7 and Met-enkephalin-Arg6-Gly7-Leu8, a previously undetected opioid peptide. The enkephalin and extended enkephalin sequences are each bounded by paired basic amino acid residues. Preproenkephalin may represent a multi-hormone precursor, like the corticotropin-beta-lipotropin precursor.  相似文献   

10.
Identification of receptors for neuromedin U and its role in feeding   总被引:19,自引:0,他引:19  
Neuromedin U (NMU) is a neuropeptide with potent activity on smooth muscle which was isolated first from porcine spinal cord and later from other species. It is widely distributed in the gut and central nervous system. Peripheral activities of NMU include stimulation of smooth muscle, increase of blood pressure, alteration of ion transport in the gut, control of local blood flow and regulation of adrenocortical function. An NMU receptor has not been molecularly identified. Here we show that the previously described orphan G-protein-coupled receptor FM-3 (ref. 15) and a newly discovered one (FM-4) are cognate receptors for NMU. FM-3, designated NMU1R, is abundantly expressed in peripheral tissues whereas FM-4, designated NMU2R, is expressed in specific regions of the brain. NMU is expressed in the ventromedial hypothalamus in the rat brain, and its level is significantly reduced following fasting. Intracerebroventricular administration of NMU markedly suppresses food intake in rats. These findings provide a molecular basis for the biochemical activities of NMU and may indicate that NMU is involved in the central control of feeding.  相似文献   

11.
对人体中一个新的乙肝表面抗原结合蛋白SBP(HBsAg Binding Protein)进行了组成和结构分析.利用免疫组化的方法检测了人脑、肝、前列腺、肌肉、胃以及睾丸等组织的SBP的表达情况,并利用ELISA方法测定了慢性乙型肝炎病人、乙肝康复者以及健康人血清中SBP的含量并作统计学分析.免疫组化结果显示SBP存在于包括肝组织在内的多种组织中.ELISA结果表明,慢性乙肝病人、乙肝康复者以及健康人血清中SBP含量存在显著差异,推测SBP可能与人体对乙肝病毒的易感及耐受有关.  相似文献   

12.
A Bechara  D van der Kooy 《Nature》1985,314(6011):533-534
Many psychoactive drugs, including the opiates, have been shown to have paradoxical reinforcing effects. Opiates produce positive reinforcing effects when they are paired with visual and textural environmental stimuli in rats, yet, at similar doses and over the same routes of administration, produce aversive effects, as shown when they are paired with taste stimuli. Similarly, in human, the positive reinforcing effects of opiates are well known to addicts and recreational drug users, yet patients receiving opiates as analgesics often report nauseous reactions. At present there is no evidence to differentiate between the neural substrates that mediate these opposite motivational effects. We now report an initial step in the resolution of this paradox by demonstrating that endogenous and exogenous opioids produce positive reinforcing effects through an action on brain opiate receptors, and aversive effects through an action on peripheral opiate receptors (especially in the gut).  相似文献   

13.
D S Baskin  Y Hosobuchi  H H Loh  N M Lee 《Nature》1984,312(5994):551-552
Since the discovery of opiate receptors in the central nervous system (CNS), it has become apparent that endogenous opiate ligands are involved in CNS function. Most attention has focused on their role in modulating pain, but they have also been implicated in various physiological functions and in disease states. We are concerned with evidence that endogenous opioid peptides may also contribute to the neurological deficits arising from cerebral ischaemia. Dynorphin, which is widely distributed in the brain and pituitary, has been reported to produce unusual motor and behavioural effects and may act as a regulatory neuropeptide, not as a classical opiate agonist or antagonist. We have therefore administered to cats in which the right middle cerebral artery had been occluded both dynorphin (1-13) and analogue and control materials. We find that dynorphin (1-13) prolongs survival.  相似文献   

14.
Immunoglobulin-A has an irreplaceable role in the mucosal defence against infectious microbes. In human and mouse, IgA-producing plasma cells comprise approximately 20% of total plasma cells of peripheral lymphoid tissues, whereas more than 80% of plasma cells produce IgA in mucosa-associated lymphoid tissues (MALT). One of the most biologically important and long-standing questions in immunology is why this 'biased' IgA synthesis takes place in the MALT but not other lymphoid organs. Here we show that IgA class-switch recombination (CSR) is impaired in inducible-nitric-oxide-synthase-deficient (iNOS-/-; gene also called Nos2) mice. iNOS regulates the T-cell-dependent IgA CSR through expression of transforming growth factor-beta receptor, and the T-cell-independent IgA CSR through production of a proliferation-inducing ligand (APRIL, also called Tnfsf13) and a B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF, also called Tnfsf13b). Notably, iNOS is preferentially expressed in MALT dendritic cells in response to the recognition of commensal bacteria by toll-like receptor. Furthermore, adoptive transfer of iNOS+ dendritic cells rescues IgA production in iNOS-/- mice. Further analysis revealed that the MALT dendritic cells are a TNF-alpha/iNOS-producing dendritic-cell subset, originally identified in mice infected with Listeria monocytogenes. The presence of a naturally occurring TNF-alpha/iNOS-producing dendritic-cell subset may explain the predominance of IgA production in the MALT, critical for gut homeostasis.  相似文献   

15.
Neuropsychiatric disorders such as anxiety, depression, migraine, vasospasm and epilepsy may involve different subtypes of the 5-hydroxytryptamine (5-HT) receptor. The 1B subtype, which has a unique pharmacology, was first identified in rodent brain. But a similar receptor could not be detected in human brain, suggesting the absence in man of a receptor with equivalent function. Recently a human receptor gene was isolated (designated 5-HT1B receptor, 5-HT1D beta receptor, or S12 receptor) which shares 93% identity of the deduced protein sequence with rodent 5-HT1B receptors. Although this receptor is identical to rodent 5-HT1B receptors in binding to 5-HT, it differs profoundly in binding to many drugs. Here we show that replacement of a single amino acid in the human receptor (threonine at residue 355) with a corresponding asparagine found in rodent 5-HT1B receptors renders the pharmacology of the receptors essentially identical. This demonstrates that the human gene does indeed encode a 1B receptor, which is likely to have the same biological functions as the rodent 5-HT1B receptor. In addition, these findings show that minute sequence differences between homologues of the same receptor from different species can cause large pharmacological variation. Thus, drug-receptor interactions should not be extrapolated from animal to human species without verification.  相似文献   

16.
The antigen CD10 (common acute lymphoblastic leukaemia antigen), which is the zinc metalloprotease, neutral endopeptidase 24.11 (also known as NEP or 'enkephalinase'), is expressed by acute lymphoblastic leukaemias, normal lymphoid progenitors, mature polymorphonuclear leukocytes and certain nonhaematopoietic cells. CD10/NEP hydrolyses several naturally occurring peptides, including the endogenous opioid pentapeptides Met- and Leu-enkephalin. In invertebrate organisms such as the mollusc Mytilus edulis, Met-enkephalin triggers inflammatory responses by inducing morphological changes, directed migration and aggregation of haemocytes. We report here that a structure related to CD10/NEP is expressed by M. edulis haemocytes and that abrogation of CD10/NEP enzymatic activity reduces the amount of Met-enkephalin required for haemocyte activation by five orders of magnitude. Similar results are obtained with CD10+ human polymorphonuclear leukocytes, indicating that CD10/NEP related structures regulate enkephalin-mediated inflammatory responses in organisms whose ancestors diverged approximately 500 million years ago.  相似文献   

17.
The cellular site of synthesis of factor VIII (FVIII:C; anti-haemophilic factor) has long been sought. Previous studies suggested the liver as a major site of synthesis, but extrahepatic sources such as spleen and lung have been implicated. Using an immunoradiometric assay (IRMA), we recently localized factor VIII antigen (FVIII:Ag, formerly FVIII:CAg), to whole perfused guinea pig liver and spleen, and to isolated hepatocytes, with lesser or trace amounts in other tissues. Using an immunohistological technique, Stel et al. detected FVIII:Ag in normal human liver sinusoidal endothelial cells, while Exner et al. detected FVIII:Ag by IRMA in extracts of human lymph nodes, lung, liver and spleen. The localization of antigen in tissues does not, however, distinguish sites of factor VIII synthesis from those of storage, and such experiments are subject to misinterpretation due to entrapment of plasma factor VIII in tissues. The recent cloning of the human factor VIII gene provides hybridization probes for the detection of factor VIII messenger RNA in cells, thus directly determining sites of synthesis. During complementary DNA cloning, we detected factor VIII mRNA in liver, and it has been localized by others in liver and placenta and in liver and kidney. In the present study, we detected factor VIII mRNA in isolated human hepatocytes, in spleen and in numerous tissues including lymph nodes and kidney, but not in white blood cells or cultured endothelial cells. We also found that the factor VIII, factor VII, factor IX and protein C antigens in liver are predominantly localized in hepatocytes, while very little von Willebrand factor antigen (vWF:Ag, formerly FVIIIR Ag) is detectable in this organ.  相似文献   

18.
beta-Carboline-3-carboxylic acid ethyl ester antagonizes diazepam activity   总被引:4,自引:0,他引:4  
S S Tenen  J D Hirsch 《Nature》1980,288(5791):609-610
Analogous to the progression of events in the opiate receptor-enkaphalin area, the first reports that benzodiazepines have selective and specific high-affinity binding sites in brain have stimulated a search for the endogenous 'ligand' or substance that might normally act at these sites. Braestrup and co-workers have extracted from human urine a gamma-fraction (ref. 10) which they have recently identified as beta-carboline-3-carboxylic acid ethyl ester (beta CEE). They reported that this substance is extremely potent in displacing 3H-diazepam from brain binding sites and proposed that a beta-carboline-3-carboxylic acid derivative might, in part, be the endogenous ligand for the brain benzodiazepine receptor. We have examined several synthetically derived beta-carboline-3-carboxylic acid analogues and now present data obtained from testing only the beta CEE described by Braestrup et al. In addition to confirming these workers' observation that this compound is a potent displacer of 3H-diazepam from brain tissue, our pharmacological data indicate that beta CEE has activity that is opposite to, rather than similar to, that of diazepam.  相似文献   

19.
Corticotropin releasing factor (CRF) is a key hormone in the integrated response to stress, acting both as the major regulator of pituitary adrenocorticotropic hormone (ACTH) release and as a neuropeptide in the brain. The actions of CRF are mediated by specific plasma membrane receptors in the anterior pituitary gland and in discrete brain areas including the cerebral cortex and several regions related to the limbic system. In addition to the pituitary and central actions of CRF, systemic administration of the peptide in the rat, dog, monkey and man causes hypotension and tachycardia because of a decrease in peripheral vascular resistance. These observations, in conjunction with the finding of immunoreactive and bioactive CRF in peripheral tissues, suggest that the peptide is locally released in tissues to act as a neurotransmitter or paracrine hormone. As CRF is present in the adrenal medulla and the peptide is known to modulate the central activity of the autonomic nervous system, we investigated the possibility that CRF is involved in the regulation of the peripheral autonomic nervous system. Such an action of CRF is supported by our demonstration of specific CRF receptors in the monkey adrenal medulla and sympathetic ganglia. In the adrenal medulla, these receptors are coupled to adenylate cyclase and can stimulate the secretion of catecholamines and Met-enkephalin.  相似文献   

20.
P Davies  R Katzman  R D Terry 《Nature》1980,288(5788):279-280
Both Alzheimer's disease and senile dementia of the Alzheimer type (AD/SDAT) are progressive dementias characterized neuropathologically by the presence in the cerebral cortex of numerous neurofibrillary tangles and neuritic plaques. We use the abbreviation AD/SDAT to denote all such cases, irrespective of age of onset. Studies of neurotransmitter-related parameters in autopsied brain tissues from patients with AD/SDAT have, to date, been confined to five putative transmitter systems. Acetycholine-releasing neurones seem to be most markedly and consistently affected, as judged by the extensive reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities that have been reported. Despite numerous studies, there is no consistent evidence for the involvement of neurones releasing dopamine, noradrenaline, serotonin, or gamma-aminobutyric acid in AD/SDAT, nor for loss of muscarinic cholinergic receptors. Thus, the involvement of cholinergic neurones in AD/SDAT seems to be specific. However, the possible involvement of neurones using other chemicals as transmitters has yet to be explored. The recent recognition of the existence of so-called 'peptidergic neurones' in the mammalian brain (for review see ref. 8) and the availability of radioimmunoassay (RIA) techniques for studying these peptides, have led us to begin a systematic investigation of neuropeptides in autopsied brain tissue from cases of AD/SDAT, and from neurologically normal individuals. We report here results obtained with a RIA for somatostatin, showing that somatostatin-like immunoreactivity in the cerebral cortex is reduced in tissue from AD/SDAT patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号