首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report new 40Ar÷39Ar dating results obtained from total fusion and incremental-heating analyses of sanidine and biotite from three tuffs found interbedded within the fossil-bearing deposits of Liaoning, northeast China. The first is a new sample of the Bed 6 Sihetun tuff from the Yixian Formation, previously dated by our team as middle Early Cretaceous, and recently considered by Lo et al., partially reset due to metamorphism from a nearby basaltic sill. The second is the Yixian Bed 9 tuff from Hengdaozi considered by Lo et al. to be unaffected by metamorphism and whose age, based on total fusion 40Ar÷39Ar dating of biotite, argues for a Jurassic age for the Yixian Formation. The third tuff is a previously undated tuff from the upper part of the underlying Tuchengzi Formation. Single crystal total fusion 40Ar÷39Ar analyses of the Sihetun sanidine showed homogeneous radiogenic Ar, Ca÷K ratios, excellent reproducibility and gave a mean age of 125.0±0.18 (1SD)±0.04 (SE) Ma. Single sanidine crystal total fusion 40Ar÷39Ar analyses of the Hengdaozi tuff gave a mean age of 125.0±0.19 (1SD)±0.04 (SE) Ma, which is indistinguishable from the Sihetun tuff. The Tuchengzi Formation tuff gave a mean age of 139.4±0.19 (1SD)±0.05 (SE) Ma. Detailed laser incremental-heating analyses of biotite from Sihetun, Hengdaozi, and Tuchengzi tuffs show disturbed Ar release patterns and evidence of trapped argon components. We conclude from these analyses that the total fusion dates on biotite by Lo et al. are erroneously old and isotopic dating of both biotite and sanidine from tuffs of the Yixian Formation point to a middle Early Cretaceous age. The upper part of the Tuchengzi Formation can be referred to the Early Cretaceous.  相似文献   

2.
We report new 40Ar/39Ar dating results obtained from total fusion and incremental-heating analyses of sanidine and biotite from three tuffs found interbedded within the fossil-bearing deposits of Liaoning, northeast China. The first is a new sample of the Bed 6 Sihetun tuff from the Yixian Formation, previously dated by our team as middle Early Cretaceous, and recently considered by Lo et al., partially reset due to metamorphism from a nearby basaltic sill. The second is the Yixian Bed 9 tuff from Hengdaozi considered by Lo et al. to be unaffected by metamorphism and whose age, based on total fusion 40Ar/39Ar dating of biotite, argues for a Jurassic age for the Yixian Formation. The third tuff is a previously undated tuff from the upper part of the underlying Tuchengzi Formation. Single crystal total fusion 40Ar/39Ar analyses of the Sihetun sanidine showed homogeneous radiogenic Ar, Ca/K ratios, excellent reproducibility and gave a mean age of 125.0 ± 0.18 (1SD) ± 0.04 (SE) Ma. Single sanidine crystal total fusion 40Ar/39Ar analyses of the Hengdaozi tuff gave a mean age of 125.0 ± 0.19 (1SD) ± 0.04 (SE) Ma, which is indistinguishable from the Sihetun tuff. The Tuchengzi Formation tuff gave a mean age of 139.4 ± 0.19 (1SD) ± 0.05 (SE) Ma. Detailed laser incremental-heating analyses of biotite from Sihetun, Hengdaozi, and Tuchengzi tuffs show disturbed Ar release patterns and evidence of trapped argon components. We conclude from these analyses that the total fusion dates on biotite by Lo et al. are erroneously old and isotopic dating of both biotite and sanidine from tuffs of the Yixian Formation point to a middle Early Cretaceous age. The upper part of the Tuchengzi Formation can be referred to the Early Cretaceous.  相似文献   

3.
探讨冀北赤城红旗营子群是否经历了印支期的构造热事件。通过对冀北赤城红旗营子群黑云斜长片麻岩样品进行的黑云母40 Ar/39 Ar年龄测定,获得其坪年龄和等时线年龄分别为(238.63±1.44)Ma和(238.77±1.71)Ma,两者基本一致。此年龄数据是黑云斜长片麻岩在晚古生代角闪岩相区域变质作用之后所经历印支期构造热事件的记录。综合分析冀北岩浆作用及其地质年代学特征,认为它可能与区域上同时期的酸性岩浆活动有关,是后者为此次构造热事件提供了必要的热源。  相似文献   

4.
It is difficult to date pyroclastic rocks, for almost all the dating methods, due to the multiple sources during their formation. ^40Ar/^39gAr incremental heating results on groundmass selected from the samples show that the age spectra are meaningless geologically. However, singe crystal total fusions of CO2 lasing on the sanidine separates could yield rational 4^40Ar/^39Ar results and distinguish their sources in this study. Timing on three formations of the Moshishan Group, after avoiding the exotic and altered grains by lasing on the single sanidine separate, was reported in this paper. The lowermost portion of the Chawan Formation gives an age of 113.7±0.3 Ma; the lower part of the Xishantou Formation was formed 116.4±0.4 Ma ago and the bottom of the Gaowu Formation took its shape at 118.4±0.4 Ma. These new ages are much younger than the previous ones, suggesting that these thick volcanic formations had been formed in very short durations.  相似文献   

5.
The geological cross section of the Zhangjiakou Formation is originally established in the Zhangjiakou region. From the dating of four samples from typical cross sections of the Zhangjiakou Formation in the Zhangjiakou region, the age range is found to be mainly from 143.0 ± 3.7 Myr to 136.1 ± 1.4 Myr, which almost equals the sum of the age range of the Zhangjiakou Formation (136-135 Myr) and that of the Tuchengzi Formation (143-136 Myr) in the Luanping region, and the Zhangjiakou and Tuchengzi Formations in Zhang- jiakou-Luanping of North Hebei are found to be conformable. The evidence above indicates that the Zhangjiakou and Tuchengzi Formations, which are distributed in Zhangjiakou-Luanping, were formed under the same geological setting. Volcanic activity was earlier and longer (143-136 Myr) in the western region (Zhangjiakou) than that in the eastern region (Luanping). The "Zhangjiakou Formation" in Chengde and Pingquan formed in the period in which the Yixian Formation in West Liaoning formed, so should be renamed the Yixian Formation.  相似文献   

6.
The samples of Caledonian mylonitized granite and Jurassic meta-sedimentary rocks were collected in the north of Dangjinshan Pass, Qaidam gate fault-valley and Gesi fault-valley. Detailed studies under the microscope and electronic microscope suggest that all the samples contain the syntectonic-growing minerals such as white mica, chlorite, sericite, biotite, etc. By dating these minerals, we got a group of 40Ar/39Ar laser probe isochronal ages of 89—92 Ma and apparent ages of (46.6±6.4) Ma. The ages ranging from 97 to 46 Ma were reported for the first time in the isotopic dating researches of the Altyn Fault. The isochronal age group of (98—89) Ma indicates that a ductile strike-slip event, with low-grade metamorphism, began in late Cretaceous. This suggests that the strike-slip movement of the Altyn Fault should be related to the formation of the so-called west tectonic syntaxis in the Nepal-western Kunlun area.  相似文献   

7.
In different opinions, the stratigraphic time of the feathered dinosaurs and early birds in Sihetun and its neighboring areas in Beipiao, western Liaoning is appointed to different epoches of eras, such as Late Jurassic, Early Cretaceous and Late Jurassic-Early Cretaceous. Even the recently dating data are still very different. This note first reported the U-Pb age of (125.2±0.9) Ma of zircon separated from tuff of Sihetun vertebrates horizon. The age reveals that Sihetun vertebrate belongs to Early Cretaceous. The method is more objective, because of the strong ability of disturbance resistance and high U-Pb blocking temperature of zircons.  相似文献   

8.
In different opinions, the stratigraphic time of the feathered dinosaurs and early birds in Sihetun and its neighboring areas in Beipiao, western Liaoning is appointed to different epoches of eras, such as Late Jurassic, Early Cretaceous and Late Jurassic-Early Cretaceous. Even the recently dating data are still very different. This note first reported the U-Pb age of (125.2±0.9) Ma of zircon separated from tuff of Sihetun vertebrates horizon. The age reveals that Sihetun vertebrate belongs to Early Cretaceous. The method is more objective, because of the strong ability of disturbance resistance and high U-Pb blocking temperature of zircons.  相似文献   

9.
锆石SHRIMP U-Pb定年结果显示: 内蒙古中部白音乌拉地区原宝力高庙组的流纹岩形成时代为300.0±2.9 Ma, 属晚石炭世; 青格勒宝拉格地区原宝力高庙组的凝灰岩结晶年龄为159.6±1.4 Ma, 并获得 3颗捕获锆石的年龄分别为291.8±3.4, 304.0±3.3和734.7±9.2 Ma, 应属于晚侏罗世满克头鄂博组。锆石LA-MC-ICP-MS Hf同位素分析显示: 流纹岩锆石εHf(t) 值为+10.5~+12.9, TDMC值为493~645 Ma; 凝灰岩岩浆锆石εHf(t)值为+10.1~+13.1, TDMC值为369~563 Ma。研究结果表明, 流纹岩源于晚古生代新生地壳的重熔并混入少量老地壳物质, 凝灰岩源于晚古生代地壳的熔融。Hf同位素特征显示晚古生代流纹岩和中生代凝灰岩源于相似的源区, 揭示了晚古生代的一次重要的增生事件, 并且在约160 Ma时期发生过地壳的再造。结合前人的研究成果表明, 兴蒙造山带在约300 Ma时处于古亚洲洋演化过程中岛弧向碰撞后伸展环境的转换时期, 在约160 Ma受到蒙古?鄂霍茨克构造域的影响。  相似文献   

10.
江西南部版石盆地火山岩SHRIMP锆石U-Pb年龄及其地质意义   总被引:3,自引:0,他引:3  
应用SHRIMP锆石U-Pb定年方法,对江西南部三南-寻乌火山岩带版石盆地原鸡笼嶂组凝灰岩和原版石组流纹岩开展年代学研究.结果表明,凝灰岩SHRIMP锆石U-Pb年龄为(142.5±1.3)Ma,流纹岩SHRIMP锆石U-Pb年龄为(131.4±1.3)Ma.根据新的国际地层表,晚侏罗世与早白垩世的界线划在(145.5...  相似文献   

11.
SHRIMP U-Pb zircon dating was carried out for the Daohugou Biota near Ningcheng of Inner Mongolia and for lavas overlying or underlying sala-mander-bearing strata at Reshuitang in Lingyuan of West Liaoning. The results suggest that the Dao- hugou Biota occurred at an interval from 168 Ma to 164―152 Ma. Both the Daohugou Biota and the salamander-bearing fossil assemblage are the same biota and thus developed from 168 to 152 Ma, i.e. from late Middle Jurassic to the early Late Jurassic. The Daohugou Biota-bearing rocks, resting on the Jiulongshan Formation in disconformity and being overlain in unconformity by Late Jurassic Tuchengzi Formation and Early Cretaceous rocks containing the Jehol Biota, are mainly composed of volcanic-sedi- mentary rocks in a normal sequence. It is recom- mended that the Daohugou Biota and the related stratigraphy should be correlated with the Tiaojishan Formation (Lanqi Formation in West Liaoning) or its synchronous rocks. It is suggested that the Dao- hugou Biota and the Jehol Biota would be neither taken into one biota nor considered as the earliest elements of the Jehol Biota. The Daohugou Biota and the related rocks and the Yixian Formation were respectively formed in different periods of volcanic-sedimentary tectonics.  相似文献   

12.
Laser micro area analysis 40 Ar 39 Ar isochron dating for pure alunite is first reported. Micro area 40 Ar 39 Ar isochron dating results revealed that the metallogenetic epoch of Fanshan superlarge alunite deposit is 74.50 Ma, and this age is 10-20 Ma later than that of regional volcanic activity. Moreover, the potential application of micro area analysis 40 Ar 39 Ar isochron dating method in metallogenetic epoch studies for nonmetal deposits is also discussed.  相似文献   

13.
40Ar/39Ar dating of diagenetic illite has been performed to investigate gas reservoirs in the Sulige Gas Field of the northern Ordos Basin. A series of technical challenges were confronted, including illite purification, Ar recoil loss, and separation of diagenetic illite from detrital illite. Mineral growth ages for diagenetic illite were obtained by this experiment, from which the age of gas emplacement was deduced to be later than 169 Ma.  相似文献   

14.
The angular unconformity between the Tuchengzi Formation and the Zhangjiakou Formation in the Chengde area is commonly regarded as the direct evidence of boundary between Jurassic and Cretaceous systems, and as the evidence of tectonic transformation interfaces in Mesozoic Era in the West Liaoning-North Hebei. Moreover, the lower boundary age of the Zhangjiakou Formation in the Chengde was to be thought about 135 Myr in the past. Based on the detailed study and systematic sampling in Yixian-Beipiao, Lingyuan, Chengde and Luanping areas in the field, the authors obtained the following isotopic ages by means of LA-ICP-MS dating: In the Lingyuan area, the Zhangjiakou Formation and the Yixian Formation are in angular unconformable contact; the age range of the Zhangjiakou Formation volcanic rock is from 133 to 130 Myr (seven samples), and that of the Yixian Formation volcanic rock is from 126 to 121 Myr (eleven samples). In the Luotuoshan of Chengde, the Tuchengzi Formation and the Zhangjiakou Formation are in angular unconformable contact; the age at the lower Zhangiiakou Formation is about 124 Myr (one sample), which reflects that the age range of the lower Zhangjiakou Formation is from 129 to 124 Myr combined with the previous study. In the Luanping basin, there is the largest sediment gap in upper Mesozoic, whose lower boundary age is confined in 131 to 130 Myr. In the Yixian-Beipiao area, the second Member of the Yixian Formation, making up more than 3/4 thickness of the Yixian Formation, was formed in 126 to 119 Myr, and the age of the Yixian Formation at the bottom is about 132 Myr. Moreover, the upper boundary age of the Tuchengzi Formation is about 136 Myr in the West Liaoning-North Hebei region. Based on the above isotopic data combined with the geological characteristics in the field in the West Liaoning-North Hebei region, it reflects that there was a widespread tectonic event in the period of 136 to 126 Myr (mainly in 130-126 Myr) in the West Liaoning-North Hebei, and it formed the late Mesozoic regional angular unconformity. Moreover, the lower boundary ages of the late Mesozoic regional angular unconformity in different areas are different, and the tectonics and the creature assemblage are different in the strata at the top and bottom of the regional angular unconformity. It implies that the late Mesozoic regional angular unconformity is a regional interface of tectonic transformation in Mesozoic Era in the West Liaoning-North Hebei.  相似文献   

15.
The angular unconformity between the Tuchengzi Formation and the Zhangjiakou Formation in the Chengde area is commonly regarded as the direct evidence of boundary between Jurassic and Cretaceous systems, and as the evidence of tectonic transformation interfaces in Mesozoic Era in the West Liaoning-North Hebei. Moreover, the lower boundary age of the Zhangjiakou Formation in the Chengde was to be thought about 135 Myr in the past. Based on the detailed study and systematic sampling in Yixian-Beipiao, Lingy- uan, Chengde and Luanping areas in the field, the authors obtained the following isotopic ages by means of LA-ICP-MS dating: In the Lingyuan area, the Zhangjiakou Formation and the Yixian Formation are in angular unconformable contact; the age range of the Zhangjiakou Formation volcanic rock is from 133 to 130 Myr (seven samples), and that of the Yixian Formation volcanic rock is from 126 to 121 Myr (eleven samples). In the Luotuoshan of Chengde, the Tuchengzi Formation and the Zhangjiakou Formation are in angu- lar unconformable contact; the age at the lower Zhangjiakou Formation is about 124 Myr (one sample), which reflects that the age range of the lower Zhangjiakou Formation is from 129 to 124 Myr combined with the previous study. In the Luanping basin, there is the larg- est sediment gap in upper Mesozoic, whose lower boundary age is confined in 131 to 130 Myr. In the Yixian-Beipiao area, the second Member of the Yixian Formation, making up more than 3/4 thickness of the Yixian Formation, was formed in 126 to 119 Myr, and the age of the Yixian Formation at the bottom is about 132 Myr. Moreover, the upper boundary age of the Tuchengzi Formation is about 136 Myr in the West Liaoning-North Hebei region. Based on the above isotopic data combined with the geological characteristics in the field in the West Liaoning-North Hebei region, it reflects that there was a widespread tectonic event in the period of 136 to 126 Myr (mainly in 130-126 Myr) in the West Liaoning-North Hebei, and it formed th  相似文献   

16.
Stratigraphy and age of the Daohugou Bed in Ningcheng, Inner Mongolia   总被引:6,自引:0,他引:6  
Recent fieldwork has extended the distribution of the Daohugou Bed deposits from the Daohugou Village to its several neighboring areas. The fossil-bearing Daohugou deposits uncomformably overlie complex bedrocks, and comprise three major parts. The red shales in the lower part were misidentified as belonging to the Tuchengzi Formation. Field excavation has indicated that the shales of upper part of the bed are the major fossil-bearing horizon. Due to strong tectonic activities, sediments were often folded with the sequences inverted in the region. Some newly recognized contacts between the Daohugou Bed and the volcanic rocks showed that the ignimbrite of the Tiaojishan Formation (159-164 Ma) underlies the Daohugou deposits, rather than overlying the latter as previously proposed. Thus, the age of the Daohugou deposits should be younger than the age of the ignimbrite, and thus it was incorrect to correlate the Daohugou Bed with the Middle Jurassic Jiulongshan Formation. Although biostratigraphic studies based on conchostracans and insects support a Middle Jurassic-early Late Jurassic age for the Daohugou deposits, vertebrate fossils such as Liaoxitriton, Jeholopterus and feathered maniraptorans show much resemblance to those of the Yixian Formation. In other words, despite the absence of Lycoptera, a typical fish of the Jehol Biota, the Daohugou vertebrate assemblage is closer to that of the Early Cretaceous Jehol Biota than to any other biota. We propose that the Daohugou fossil assemblage probably represents the earliest evolutionary stage of the Jehol Biota based on both vertebrate biostratigraphy and the sedimentological and volcanic features which suggest the Daohugou deposit belongs to the same cycle of volcanism and sedimentation as the Yixian Formation of the Jehol Group.  相似文献   

17.
In West Liaoning-North Hebei, the Tiaojishan Formation volcanic rocks are developed and many isotopic ages with a very wide age range were obtained in them as well. These different ages have direct influence on confirming and interpreting the related geological issues in West Liaoning-North Hebei and have restricted the study of geological problems related. In the field, the Tiaojishan Formation and the overlying Tuchengzi Formation are in parallel unconformable contact. By systematical sampling and dating of LA-ICP-MS in the Tiaojishan Formation (especially in the upper part) in Luanping, Chengde basins of Northern Hebei Province and in Lingyuan, Jinlingsi-Yangshan basins of Western Liaoning Province, combined with the dating data obtained by previous researchers, results indicate that the upper boundary age of the Tiaojishan Formation is from 156 to 153 Ma, and the lower boundary age of the Tiaojishan Formation is about 165 Ma, the Tiaojishan Formation was formed from the late of middle Jurassic to late Jurassic Epoch.  相似文献   

18.
Whole-rock and mineral separate Ar-Ar dating was carried out for the Linzizong volcanic rocks at Linzhou Basin in Tibet to constrain the time span of volcanism and the corresponding stratigraphic sequence. Sampling was based on detailed geologic mapping and stratigraphic sequence of Dianzhong, Nianbo, Pana Formations, systematically from the bottom to near the top. The results indicate that the Linzizong volcanic rocks erupted from Paleocene to middle of Eocene (64.43--43.93 Ma). Among them, the Pana Formation formed from ca. 48.73 to 43.9 Ma, the Nianbo Formation around 54 Ma and the Dianzhong Formation from 64.4 to 60.6 Ma. In combination with evidence from the geochemical characteristics of the volcanic rocks, and from stratigraphy in southern Tibet, it is postulated that the age of the lowest member in the Dianzhong Formation of the Linzizong volcanic rock, which overlies unconformably the Late Cretaceous Shexing Formation, likely corresponds to the inception of the collision between Indian and Asian continents in southern Tibet.  相似文献   

19.
As the northern boundary of the Tibetan Plateau theAltyn fault is a huge NEE strike-slip fault belt in the inner Asian continent. Its formation and evolution are closelyrelated to the uplift of the whole plateau and the mass es-cape to the east. In recent years the Altyn fault has be-come a hot point of geological study in the Tibetan Pla-teau. The formation age of the Altyn fault was argued for a long time. Some researchers emphasized that the Altyn fault had commenced since early Paleo…  相似文献   

20.
Two ductile shear zones trending EW and NNE respectively not only controlled the tectonic framework of the northern North China, but also constrained the geodynamic background for gold mineralization in this region. Field observations and microstructural analyses reveal that the EW trending ductile shear zones are mainly contributed to dextral compressional deformation resulting from top-to- the-southeast oblique thrust shearing, whereas the NNE trending ones are genetically related to sinistral strike-slip and extensional faulting. One sample from the former yielded an 40Ar-39Ar plateau age of (219±4) Ma (Bi) and two samples from the latter gave 40Ar-39Ar plateau ages of (116±2) Ma (Bi) and (127±3) Ma (Bi). These ages provide constraints on the top-to-the-southeast oblique thrusting event occurring in Late Triassic and the sinistral extensional and strike-slip faulting event which occurred in Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号