首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
室内空气污染物的危害及控制   总被引:2,自引:0,他引:2  
简述了室内空气污染物的来源、特点及危害,并提出了降低有害物浓度、提高室内空气质量的方法。  相似文献   

12.
阐述了引起室内空气环境安全问题的原因,分析了空调系统对室内空气品质的影响,提出了为保证空气环境安全,空调系统在设计过程中所应采取的措施。  相似文献   

13.
室内空气品质主观评价的灰色关联分析   总被引:1,自引:0,他引:1  
运用灰色关联思想分析了室内污染物影响室内人员主观评价的特点,并计算了室内污染水平与室内空气品质不接受率和室内人员不良症状之间的灰色关联度.结果表明:吸入尘和菌落是影响主观评价的最主要因素,这为建筑室内环境系统的设计和维护提供了关注的重点和依据、  相似文献   

14.
高校图书馆室内空气质量与读者   总被引:3,自引:0,他引:3  
分析了高校图书馆室内空气质量的影响因素,提出了改善高校图书馆室内空气质量的措施,阐明了改善图书馆室内空气质量对读者的重要意义。  相似文献   

15.
 室内空气污染对健康的危害在近年引起越来越多的关注,如何有效去除室内空气污染物成为污染治理的重要课题。纳米催化剂因其特殊的效应,在降解室内空气污染物方面展现了良好的效果和应用前景。本文介绍金属、金属氧化物、复合氧化物纳米催化剂降解不同室内空气污染物的研究进展,阐述光催化降解有机物的基本原理,讨论各类催化剂的优缺点。贵金属在室内污染物的降解方面虽有很好的效果,但其昂贵价格阻碍了推广应用;氧化物纳米材料光催化降解室内污染物的过程需要在光照下进行,负载贵金属后具有很好的降解性能;用来催化氧化降解室内污染物的氧化物和复合氧化物纳米材料对室内污染物表现出很好的催化性能,具有良好的发展前景。展望了纳米催化剂在降解室内空气污染物方面的研究方向和应用前景。  相似文献   

16.
 随着灰霾等空气污染现象的日益频繁,人们对室内空气质量越来越关注.臭氧是影响室内空气质量的一个重要因素.结合近年来国内外对室内环境中臭氧污染的相关研究,分析室内臭氧污染的来源和目前室内环境臭氧污染情况,探讨目前有关臭氧净化治理的方法与技术,指出应进一步发展更为高效、实用的多相热催化等净化技术.  相似文献   

17.
空调系统新风节能与室内空气品质的改善   总被引:2,自引:0,他引:2  
简要介绍了目前空调系统常用的新风供应方式及存在的问题,指出采用新风换气机是解决空调系统新风节能与改善室内空气品质的最好方法。  相似文献   

18.
浅谈室内装修污染及其防治   总被引:2,自引:0,他引:2  
在监测工作的基础上,分析了室内空气污染的成因及其对人体健康的危害,阐述了太原市室内环境污染现状,并提出了相应的污染防治措施.  相似文献   

19.
目前 ,室内空气污染对人体健康产生的危害已引起人们的广泛关注。本文通过对造成室内空气污染来源的分析 ,提出防止室内空气污染的对策。  相似文献   

20.
落地炕和架空炕是目前北方农村冬季普遍采用的两种采暖设施,它们的构造与密封性对采暖室内的热湿环境与空气质量有显著影响.参照相关国家标准,在甘肃省临洮县对使用落地炕与架空炕采暖的室内热环境和空气质量进行了连续的对比试验研究.结果表明:架空炕采暖室内日平均温度为12.6 ℃,比落地炕采暖室内日平均温度10.8 ℃高出1.8 ℃;使用PMV-PPD指标评价发现,架空炕室内热舒适度综合评价等级为Ⅱ级,落地炕室内综合评价等级为Ⅲ级.架空炕采暖室内空气质量PM2.5、PM10和CO指标优于落地炕采暖室内指标,两铺炕采暖室内首要污染物均为PM10.架空炕采暖室内空气质量等级为轻污染,落地炕采暖室内空气质量等级为重污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号