首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Geckos(Gekko gecko)use their hairy setae to adhere on various solid surfaces and dung beetles(Copris ochus Motschulsky)use their hairy bristles to anti-adhere in sticky environments.We study why two hairy systems express a conflict in functions by using SEM,histological approaches and functional experiments.Adhesion models and various parameters were collected and analyzed.Based on the morphological data and functional experimental results carried out by natural and denatured gecko setae and beetle bristles,we first demonstrated that the stiffness along the hair is 1000 to 30000 times that perpendicular to the hair.This stiffness difference is the key factor leading to the two hairy systems' functional differences.Slope of gecko setae reduces contact stiffness,increases contact points and real contact area that results in amazing adhesive abilities.On the other hand,stiff bristles in a beetle have higher contact stiffness,which reduces the real contact area and decreases the adhesion between two contact surfaces.Deformation of gecko setae destroys the hierarchical structure,increases the contact stiffness and results in a decrease of adhesion forces.Similarly,deformation of beetle bristles destroys the erect structure of the hair,interconnects the separated bristles and thus decreases the anti-adhesive functions.These observations inspire us in designing anti-adhesive and adhesive biomimetic systems  相似文献   

2.
In nature, geckos have developed complex adhesion structures capable of smart adhesion, which is the ability to cling to different smooth and rough surfaces, even ceilings, and detach at will. The hierarchical structure of gecko foot hairs consists of microscale setae, branches and nanoscale spatulae, which contributes to their strong adhesion on different surfaces. In this paper, we propose a simple and low-cost method for fabricating two-level high aspect ratio microfiber arrays that mimic gecko foot hairs. SU-8 photoresist was used and single-level SU-8 microfiber arrays were obtained by a thick film photolithography process. Single-level polydimethyl-siloxane (PDMS) microfiber arrays were also obtained by a micromolding process and the master template for this process was fabricated using inductively coupled plasma (ICP) technology. Using the silicon mold with deep-hole arrays as a substrate, an SU-8 layer with microhole arrays was added to it using thick film photolithography and it formed a double stack mold from which the two-level hierarchical PDMS microfiber arrays were replicated. Water contact angle tests showed that the two-level hierarchical structures are extremely hydrophobic (about 148.5° compared with the Tokay gecko’s 160°).  相似文献   

3.
Geckos are known for their excellent ability to climb walls and run on ceilings. Previous studies of the gecko’s locomotive and adhesive mechanisms, its neuro-sensory and neuro-modulatory systems, its fabrication of artificial setae array, and other related developments, have inspired further research on gecko-based and gecko-like robots. Key research findings in this area are reviewed in the present paper.  相似文献   

4.
As a member of robot families, climbing robots have become one of the research hot-spots in the robotic field recently and Gekko gecko (G. gecko) has been broadly seen as an ideal model for climbing robot development. But for gecko-mimic robots, one of the key problems is how to design the robot's foot. In this paper, (1) high-speed camera recording and electrophysiological method are used to observe motion patterns of G. gecko's foot when it climbs on different oriented surfaces; (2) nerve innervations of gecko's toes to motion and reception are studied. It is found that the five toes of the G. gecko can be divided into two motion and reception divisions, and also its motion and reception are modulated and controlled hierarchically. The results provide important information and exclusive ideas for the foot design and control algorithm of gecko-mimic robots.  相似文献   

5.
He  LingHui  Ding  KeWei 《科学通报(英文版)》2009,54(11):1970-1972
Exemplified by adhesive contact of a rigid sphere with equiaxially stretched elastomeric substrates, the effect of finite pre-strain on adhesion behavior is studied based on the JKR model. The analysis indi- cates that the pre-strain reduces the contact area between the sphere and the substrate, but does not alter the adhesion strength.  相似文献   

6.
Geckos are known for their excellent ability to climb walls and run on ceilings. Previous studies of the gecko's locomotive and adhesive mechanisms, its neuro-sensory and neuro-modulatory systems, its fabrication of artificial setae array, and other related developments, have inspired further research on gecko-based and gecko-like robots. Key research findings in this area are reviewed in the present paper.  相似文献   

7.
The study of the movement behavior of geckos on a vertical surface, including the measurement and recording of the reaction forces as they move in different directions, plays an important role in understanding the mechanics of the animals’ locomotion. This study provides inspiration for the design of a control system for a bionics robot. The three-dimensional reaction forces of vertical surface-climbing geckos (Gekko gecko) were measured using a three-dimensional force-sensors-array. The behavior of gecko as it moved on a vertical surface was recorded with a high speed camera at 215 fps and the function of each foot of a gecko are discussed in this paper. The results showed that the gecko increased its velocity of movement mainly by increasing the stride frequency in the upward, downward and leftward direction and that the speed had no significant relationship to the attachment and detachment times. The feet above the center-of-mass play a key role in supporting the body, driving locomotion and balancing overturning etc. The movement behavior and foot function of geckos change correspondingly for different conditions, which results in safe and effective free vertical locomotion. This research will be helpful in designing gecko-like robots including the selection of gait planning and its control.  相似文献   

8.
We report on our study of the static and dynamic wetting property of hydrophobic surfaces with micro-and dual micro/nano-scale structures.Simulations based on the lattice Boltzmann method showed that the apparent contact angle of water droplets on hy-drophobic surfaces with micro-scale structures increases as solid area decreases,whereas dual micro/nano-scale structures not only increase surface hydrophobicity but also greatly stabilize the Cassie state of droplets.Droplets falling on a superhydrophobic surface distort and,depending of free energy,sometimes bounced on the surface before finally adhering to the surface.These phenomena are in agreement with experimental observations.Simulated results also show that micro/nano-scale surface structures can increase droplet rebound height,which depends on static apparent contact angle.  相似文献   

9.
On the basis of the microstructure of the cross-section of a beetle’s elytra,three bio-inspired lightweight structures were designed and built from acrylonitrile butadiene styrene plastic with a three-dimensional printer.The mechanical properties of three lightweight structures were analyzed and compared employing the finite element method,and quasi-static compression experiments and a three-point bending test on the structure samples were carried out using an electronic universal testing machine to verify the effectiveness of the finite element method.The results show that all three bio-structures were lightweight and had excellent mechanical properties.In particular,the bio-structure with spherical holes and hollow columns perpendicular to the top and bottom surfaces best imitated the microstructure of the cross-section of the Cybister elytra and had the greatest specific strength/stiffness in compression and bending.Finally,a preliminary optimization design was obtained for this bio-structure to further improve its specific strength and specific stiffness to 31.82 kN m/kg and 108.73 kN m 2 /kg respectively.  相似文献   

10.
The interaction of extracellular matrix-integrin markedly influences the adhesion,outgrowth,differentiation and expression of serine proteinases by the blastocyst,so it is regarded as a vital factor in blastocyst implantation.Although the mechanism of extracellular interactions between extracellular matrix and integrins has been well elucidated,the roles of the signaling molecules in the extracellular matrix-integrin signal transduction pathway in blastocyst implantation are unknown.This limits the understanding of blastocyst implantation and ECM-integrin signal transduction pathway.In the present study,in vitro blastocyst culture and indirect immunocytochemistry,matrix metalloproteinases(MMPs) zymography and antisense oligodeoxynucleotide(ODN) were used to investigate the expression of a fundamental molecule of integrin-dependent signal transduction pathways,focal adhesion kinase(FAK),in mouse blastocysts and its influence on mouse blastocyst adhesion,outgrowth and MMP-2.The results showed that mouse blastocysts expressed FAK.FAK protein was clustered in the peripheral migrating trophoblast cells and dispersed in the central area of blastocyst outgrowth.Fibronectin triggered pro-MMP-2 and 64kD MMP-2 activities.The antisense ODN to FAK attnuated pro-MMP-2 and 64kD MMP-2 activites which decreased abruptly and tended to disappear with increasting concentrations of the antisense ODN.Both mouse blastocyst adhesion and outgrowth on fibronectin were also influenced by the antisense ODN.Up to 20μg/mL of the antisense ODN concentration,the adhesion and out-growth rates were decreased in a dose-dependent manner.The results indicated that FAK influenced mouse blastocyst adhesion,outgrowth and MMP-2 activity by intracellular signal transduction.In other words,FAK regulates mouse implantation in terms of blastocyst adhesive and invasive abilities.  相似文献   

11.
According to the principle that the contact angle of liquid droplet always increases on a limited liquid-solid interface,it is suggested that the integration of many small-size limited liquid-solid interfaces results in the increase of the hydrophobicity of lotus-leaf-like micro-convex-concave surfaces.Mathematical equations of the stability of liquid-droplets on the surface of lotus-leaf-like structure were established.The relationship between the theoretical critical-radius of the void of micro-convex-concave surface and the nature of the solid and the liquid was drawn.The three conditions of realizing hydrophobicity were described.The result of computation has shown that when the radius of the void of micro-concave-convex surface is less than the theoretical critical-radius r c,the droplets may always be in a stable state on the solid surface with the contact angle greater than 90°.Theminimum area of the liquid-solid interface and low surface energy of solids are important factors in realizing hydrophobicity.The effective work of adhesion W a ’ was proposed as a criterion for measuring the hydrophobic ability of the solid surface.  相似文献   

12.
Three-dimensional simulations were carried out molecular dynamics (MD) to study the contact and sliding processes between diamond points with different tip radius of curvature and surfaces of single crystal copper. The material deformation, abrasion mechanism, lattice defects, the force of contact process, and the sliding friction process were investigated. The simulation results show that the contact force, dislocations, and stacking fault defects, increase during the contact process with increasing contact depth or tip radius of curvature. The dislocations emit along the [10i-] and [i-01] direction and then a glide band is formed. It was also found that a greater tip radius of cur- vature results in a larger groove and more material defor- mation. The normal force and friction increase with increasing tip radius of curvature, but the coefficient of friction decreases. The stacking faults spread along the sliding direction and increase with increasing tip radius of curvature. In addition, the number of upheaval atoms increases as the radius of tip curvature or sliding distance increases.  相似文献   

13.
For a long time, coalbed gas has brought about various problems to the safety of coal mine production. In addition, the mining of gas and coalbed methane (CBM) has attracted much attention. The occurrence and migration of CBM are believed to be closely related to the micro-surface properties of coal. To further explore the characteristics of CBM occurrence and migration, in this study, the micro-surface topography, adhesion, and elastic modulus of five metamorphic coals were measured by atomic force microscopy (AFM). The results show that the microtopography of coal fluctuates around 40 nm, reaching a maximum of 66.5 nm and the roughness of the surface decreases with the increase of metamorphism. The elastic modulus of coal micro-surface varies from 95.40 to 9626.41 MPa, while the adhesion varies from 15.08 to 436.22 nN, and they both exhibit a trend of "M" shape with the increase of metamorphism. Furthermore, a high correlation exists between adhesion and microtopography fluctuation. In most cases, the adhesion is larger in the concavity area and smaller in the convexity area. The research results may provide a new method for revealing the occurrence and migration of CBM and ensure efficient and safe CBM exploitation.  相似文献   

14.
A new method to design parity-check matrix based on Henon chaos model is presented. The designed parity-check matrix is with rather random behavior. Simulation results show that the proposed method makes an improvement in bit error rate (BER) performance by 0.4 dB compared with that of Luby for AWGN channel. The proposed method decreases the complexity of decoding significantly, and improves the error correcting performance of LDPC codes. It has been shown that Henon chaotic model is a powerful tool for construction of good LDPC codes, which make it possible to apply the LDPC code in real communication systems.  相似文献   

15.
Spark-erosion perforating technology was used to fabricate a Cu-based template characterized by pores with radius of 0.5 mm inclined at 75°. A commercial silicone elastomer of poly(dimethylsiloxane) (PDMS) with a rich Si-H content was used to produce an inclined array of primary setae. The technique of argon ion plasma etching on crystalline silicon was used to fabricate negative templates with radii of 5, 10, and 20 μm. The Si-H rich PDMS was used to cast three types of fine array templates, which acted as the secondary setae. A vinyl-rich PDMS precursor was used to bind the primary and secondary setae by a hydrosilylation reaction, thus allowing the formation of three different hierarchical arrangements of setae. Adhesion tests demonstrated that shear adhesion was anisotropic, first increasing in strength then decreasing to a stable level as slippage occurred. The adhesion strength was significantly influenced by the nature of the secondary setae, showing a strong correlation with aspect-ratio and concentration.  相似文献   

16.
More than 20 hair strands obtained from several people are analyzed by non-invasive micro-proton induced X-ray emission (PIXE) for probing calcium and sulfur distribution and pattern. The sulfur con- tent in woman’s hair along the longitudinal axis shows a monthly rhythm whereas the level of Ca is much higher in the medulla core and exhibits a daily rhythm both in male and female hair. The Ca content gradually decreases from the tip to the root position in the shedding process and more Ca can be found in black hair compared to white hair.  相似文献   

17.
The effect of TA001-299, the N-terminal truncation of TACO, on phorbol 12-myristate 13-acetate (PMA)-induced U937 cell adhesion was investigated. Full-length TACO and several truncations were overexpressed in U937 cells. The effects of the expressed proteins on U937 cell adhesion mediated by PMA-induced differentiation were observed by fluorescence microscopy. The results show that the overexpression of TACO1-299 inhibits cell adhesion while overexpressions of the other proteins do not have this effect. The actin-binding capability of TACO1-299 was investigated and the results show that TACO1-299 lacks the ability of TACO to bind F-actin. The inhibitive effect of TACO1-299, the functional domain of TACO, suggests that TACO may play a role in cell differentiation mediating adhesion of monoblastic leukemia cells.  相似文献   

18.
Cell-to-cell and cell-to-extracellular matrix (ECM) interactions in the functions of cell adhesion and signal transduction are important in global control of cell phenotypes and cell behavior and are crucial for maintenance of homeostasis and structural/functional stabilization of tissues and organs. Cell adhesion receptors are recognized as the molecular basis of cell adhesion. Cadherin and Integrin are widely expressed adhesion receptors in most tissues. They are transmembrane glycoproteins which, through their cytoplasmic domain, bind to many proteins at the inner surface of cell membrane to form molecule-linkage complexes and then connect with the cytoskeleton. Through cell adhesion receptors a network functioning as cell adhesion and signal transduction is organized between tissue cells and cell-ECM. In this regard cell adhesion receptors play an important role in regulation of morphogenesis, cell-cell recognition, cell migration, cell sorting and the determination of cell's fate in development. They mediate cell functions and their fault expression is intimately correlated with development of disorders like cancer. Several isoforms of Integrin were found to have tumor suppressor effect. Some components in the molecule-linkage of focal contact are actin-binding proteins as well as substrates of kinase in the Integrin initiated signal pathway to play a role as signal transducer. Some of these molecules exhibited tumor suppressor effect too. Decreased expression of E-Cadherin has been demonstrated in many epithelium originated carcinomas. Cadherin associated membrane adhesion plaque molecule β-Catenin is also involved in the oncogene Wnt signal pathway. Both E-Cadherin and β-Catenin were proved respectively with tumor suppressor effect against invasiveness and metastasis. That Cadherin is important for the posttranslationally functional expression of Connexin has been supported by evidence from developmental biology and cancer cell differentiation studies to suggest that some sort of interrelation feedback control exists between the two signal pathways.  相似文献   

19.
A kind of uniform reliability index suitable for the code and phase observations is presented and used in reliability evaluation of satellite systems. Then, based on 25 stations of Crustal Movement Observation Network of China, satellite visibility, positioning availability and observation reliability of GPS, GALILEO and integrated GPSGALILEO are calculated and analyzed in detail. Simulation results reveal that the satellite visibility of GALILEO is superior to that of GPS. Given positioning accuracy, horizontal positioning availability of GALILEO is consistent with that of GPS, but its vertical positioning availability is superior to that of GPS. However, the integrated GPS-GALILEO is shown to be superior to each of the single systems in the aspects of positioning accuracy and availability. The reliability of code and phase observations based on GALILEO and integrated GPS-GALILEO system is superior to that of GPS both in spatial and temporal domains on the whole. The new reliability index presented is simple to calculate and reflects reliability differences of different satellite systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号