首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S A Bloomfield 《Nature》1991,350(6316):347-350
Neurons sensitive to the orientation of light stimuli exist throughout the mammalian visual system, suggesting that this spatial feature is a fundamental cue used by the brain to decipher visual information. The most peripheral neurons known to show orientation sensitivity are the retinal ganglion cells. Considerable morphological and pharmacological data suggest that the orientation sensitivity of ganglion cells is formed, at least partly, by the amacrine cells, which are laterally oriented interneurons presynaptic to the ganglion cells in the inner plexiform layer. So far there have been few studies of the responses of amacrine cells to oriented visual stimuli and their role in forming orientation-sensitive responses in the retina remains unclear. Here I report the novel finding of a population of amacrine cells in the rabbit retina which are orientation-sensitive. These amacrine cells can be divided into two subtypes, whose orientation sensitivity is manufactured by two distinct mechanisms. The orientation sensitivity of the first subtype of amacrine cell is formed from the interactions of excitatory, centre-receptive field synaptic inputs and inhibitory inputs of opposite polarity, whereas that for cells of the second subtype seems to be the product of a marked asymmetry in their dendritic arbors.  相似文献   

2.
Transmitter-evoked local calcium release stabilizes developing dendrites   总被引:10,自引:0,他引:10  
Lohmann C  Myhr KL  Wong RO 《Nature》2002,418(6894):177-181
In the central nervous system, dendritic arborizations of neurons undergo dynamic structural remodelling during development. Processes are elaborated, maintained or eliminated to attain the adult pattern of synaptic connections. Although neuronal activity influences this remodelling, it is not known how activity exerts its effects. Here we show that neurotransmission-evoked calcium (Ca(2+)) release from intracellular stores stabilizes dendrites during the period of synapse formation. Using a ballistic labelling method to load cells with Ca(2+) indicator dyes, we simultaneously monitored dendritic activity and structure in the intact retina. Two distinct patterns of spontaneous Ca(2+) increases occurred in developing retinal ganglion cells--global increases throughout the arborization, and local 'flashes' of activity restricted to small dendritic segments. Blockade of local, but not global, activity caused rapid retraction of dendrites. This retraction was prevented locally by focal uncaging of caged Ca(2+) that triggered Ca(2+) release from internal stores. Thus, local Ca(2+) release is a mechanism by which afferent activity can selectively and differentially regulate dendritic structure across the developing arborization.  相似文献   

3.
D Purves  R D Hadley 《Nature》1985,315(6018):404-406
A major obstacle to understanding the mechanism of long-term change in the vertebrate nervous system has been the inability to observe the same nerve cell at different times during the life of an animal. The possibility that changes in neural connectivity underlie the remarkable flexibility of the nervous systems of mammals has therefore not been tested by direct observation. Here, we report studies in which we have visualized the same neurone in the superior cervical ganglion of young adult mice at intervals of up to 33 days. This collection of nerve cells is particularly accessible and therefore well suited to our approach. We find that the dendritic branches of the neurones examined change appreciably over intervals of 2 weeks or more; some branches retract, others elongate and others seem to form de novo. The apparent remodelling of these postsynaptic elements implies that the synaptic connections of these cells normally undergo significant rearrangement beyond what is usually considered to be the developmental period.  相似文献   

4.
建立了包含无长突细胞相互抑制网络的视网膜神经节细胞的三层网络模型,以验证李朝义等提出的非经典感受野可能源于无长突细胞相互抑制的假说,并探讨神经节细胞感受野的方位倾向性的可能机制.模拟结果表明,通过无长突细胞之间的相互抑制可以形成神经节细胞的非经典感受野.模型模拟了神经节细胞的中心区和大周边区的方位倾向性及其相互作用,结果提示神经节细胞的方位倾向性可能主要源于神经节细胞树突野的空间分布.  相似文献   

5.
Ganglion cell dendrites are presynaptic in catfish retina   总被引:2,自引:0,他引:2  
H M Sakai  K Naka  J E Dowling 《Nature》1986,319(6053):495-497
The retinal ganglion cells are third-order, spike-generating neurones whose axons transmit the output of the retina to the rest of the brain. It has long been believed that the dendrites of the retinal ganglion cells, like the dendrites of most other Golgi type I neurones, are only postsynaptic. Here we have studied the synapses made onto the ganglion cells in the catfish (Ictalurus punctatus), and we report that the distal dendrites of large-field ganglion cells make conventional chemical synapses onto other inner plexiform layer processes. We have also found that, more than 100 microns away from the cell perikaryon, the synapses made onto and by these ganglion cell dendrites are often tightly clustered. These synaptic clusters appear to be quite regularly spaced along the dendrites. Our results have important implications for the identification of ganglion cell dendrites within the inner plexiform layer as well as for the understanding of the ganglion cell response and receptive field generation.  相似文献   

6.
Olveczky BP  Baccus SA  Meister M 《Nature》2003,423(6938):401-408
An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects.  相似文献   

7.
Retinal ganglion cells are the projection neurons that link the retina to the brain. Peptide immunoreactive cells in the ganglion cell layer (GCL) of the mammalian retina have been noted but their identity has not been determined. We now report that, in the rabbit, 25-35% of all retinal ganglion cells contain substance P-like (SP) immunoreactivity. They were identified by either retrograde transport of fluorescent tracers injected into the superior colliculus, or by retrograde degeneration after optic nerve section. SP immunoreactive cells are present in all parts of the retina and have medium to large cell bodies with dendrites that ramify extensively in the proximal inner plexiform layer. Their axons terminate in the dorsal lateral geniculate nucleus, superior colliculus and accessory optic nuclei, and these terminals disappear completely after contralateral optic nerve section and/or eye enucleation. In the dorsal lateral geniculate nucleus large, beaded, immunoreactive axons and varicosities make up a narrow plexus just below the optic tract, where they define a new geniculate lamina. The varicosities make multiple synaptic contacts with dendrites of dorsal lateral geniculate nucleus projection neurons and presumptive interneurons in complex glomerular neuropil. This is direct evidence that some mammalian retinal ganglion cells contain substance P-like peptides and strongly suggests that, in the rabbit, substance P (or related tachykinins) may be a transmitter or modulator in a specific population or populations of retinal ganglion cells.  相似文献   

8.
Kim IJ  Zhang Y  Yamagata M  Meister M  Sanes JR 《Nature》2008,452(7186):478-482
The retina contains complex circuits of neurons that extract salient information from visual inputs. Signals from photoreceptors are processed by retinal interneurons, integrated by retinal ganglion cells (RGCs) and sent to the brain by RGC axons. Distinct types of RGC respond to different visual features, such as increases or decreases in light intensity (ON and OFF cells, respectively), colour or moving objects. Thus, RGCs comprise a set of parallel pathways from the eye to the brain. The identification of molecular markers for RGC subsets will facilitate attempts to correlate their structure with their function, assess their synaptic inputs and targets, and study their diversification. Here we show, by means of a transgenic marking method, that junctional adhesion molecule B (JAM-B) marks a previously unrecognized class of OFF RGCs in mice. These cells have asymmetric dendritic arbors aligned in a dorsal-to-ventral direction across the retina. Their receptive fields are also asymmetric and respond selectively to stimuli moving in a soma-to-dendrite direction; because the lens reverses the image of the world on the retina, these cells detect upward motion in the visual field. Thus, JAM-B identifies a unique population of RGCs in which structure corresponds remarkably to function.  相似文献   

9.
H W?ssle  U Grünert  J R?hrenbeck  B B Boycott 《Nature》1989,341(6243):643-646
It has long been contentious whether the large representation of the fovea in the primate visual cortex (V1) indicates a selective magnification of this part of the retina, or whether it merely reflects the density of retinal ganglion cells. The measurement of the retinal ganglion-cell density is complicated by lateral displacements of cells around the fovea and the presence of displaced amacrine cells in the ganglion cell layer. We have now identified displaced amacrine cells by GABA immunohistochemistry and by retrograde degeneration of ganglion cells. By reconstructing the fovea from serial sections, we were able to compare the densities of cones, cone pedicles and ganglion cells; in this way we found that there are more than three ganglion cells per foveal cone. Between the central and the peripheral retina, the ganglion cell density changes by a factor of 1,000-2,000, which is within the range of estimates of the cortical magnification factor. There is therefore no need to postulate a selective magnification of the fovea in the geniculate and/or the visual cortex.  相似文献   

10.
Functions of the ON and OFF channels of the visual system   总被引:5,自引:0,他引:5  
P H Schiller  J H Sandell  J H Maunsell 《Nature》1986,322(6082):824-825
In the mammalian eye, the ON-centre and OFF-centre retinal ganglion cells form two major pathways projecting to central visual structures from the retina. These two pathways originate at the bipolar cell level: one class of bipolar cells becomes hyperpolarized in response to light, as do all photoreceptor cells, and the other class becomes depolarized on exposure to light, thereby inverting the receptor signal. It has recently become possible to examine the functional role of the ON-pathway in vision by selectively blocking it at the bipolar cell level using the glutamate neurotransmitter analogue 2-amino-4-phosphonobutyrate (APB)1. APB application to monkey, cat and rabbit retinas abolishes ON responses in retinal ganglion cells, the lateral geniculate nucleus and the visual cortex but has no effect on the centre-surround antagonism of OFF cells or the orientation and direction selectivities in the cortex2-5. These and related findings6-11 suggest that the ON and OFF pathways remain largely separate through the lateral geniculate nucleus and that in the cortex, contrary to some hypotheses, they are not directly involved in mechanisms giving rise to orientation and direction selectivities. We have examined the roles of the ON and OFF channels in vision in rhesus monkeys trained to do visual detection and discrimination tasks. We report here that the ON channel is reversibly blocked by injection of APB into the vitreous. Detection of light increment but not of light decrement is severely impaired, and there is a pronounced loss in contrast sensitivity. The perception of shape, colour, flicker, movement and stereo images is only mildly impaired, but longer times are required for their discrimination. Our results suggest that two reasons that the mammalian visual system has both ON and OFF channels is to yield equal sensitivity and rapid information transfer for both incremental and decremental light stimuli and to facilitate high contrast sensitivity.  相似文献   

11.
Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain by means of retinal ganglion cells (RGCs). These retinal outputs support not only pattern vision but also non-image-forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Rod-cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions. The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod-cone networks. To determine how the ipRGCs relay rod-cone light information for both image-forming and non-image-forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts. The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three photoreceptor classes. These results indicate that light signals for irradiance detection are dissociated from pattern vision at the retinal ganglion cell level, and animals that cannot detect light for NIF functions are still capable of image formation.  相似文献   

12.
B D Kuppermann  T Kasamatsu 《Nature》1983,306(5942):465-468
When a kitten is subjected to monocular lid suture early in life, cells in laminae of the lateral geniculate nucleus (LGN) connected to the sutured eye grow less than normal and cells in those laminae connected to the non-sutured eye grow more than normal. These changes are seen primarily in the binocular segment of the LGN, which corresponds to the central visual field, and are due to competition either between intracortical afferents originating from the different LGN laminae, or directly among cells within the LGN. The afferent deprivation induced by lid suture, however, is not complete, as retinal ganglion cells fire tonically both in darkness and in light. It is generally thought that this tonic retinal activity is necessary to maintain neuronal excitability at normal threshold in the central visual pathway. In the visual cortex of developing kittens, we previously showed a long-lasting change in ocular dominance of binocular cells by a brief blockade of retinal activity in one optic nerve. We report here that a complete blockade of retinal activity in one eye causes major changes in LGN cell size within 1 week. These changes occur throughout the LGN, including the monocular segment where binocular competition does not occur. The results indicate that tonic retinal activity may have an important role in the control of geniculate cell size.  相似文献   

13.
Generation of cat retinal ganglion cells in relation to central pathways   总被引:4,自引:0,他引:4  
C Walsh  E H Polley  T L Hickey  R W Guillery 《Nature》1983,302(5909):611-614
The ganglion cells of the cat retina form classes distinguishable in terms of perikaryal size, dendritic morphology and functional properties. Further, the axons differ in their diameters, patterns of chiasmatic crossing and in their central connections. Here we define, by 3H-thymidine autoradiography, the order of production of cells of each class and relate the order of the 'birthdates' to the known axonal pathways. The ganglion cell classes are produced in broad waves, which overlap as cells are produced first for central then for peripheral retina. Medium-sized cells are produced before the largest cells, and small ganglion cells are produced throughout the period of cell generation. This sequence of cell production relates to the orderly arrangement of axons in the optic tract, and can also be related to the rules of chiasmatic crossing observed for each ganglion cell class.  相似文献   

14.
A small number of mammalian retinal ganglion cells act as photoreceptors for regulating certain non-image forming photoresponses. These intrinsically photosensitive retinal ganglion cells express the putative photopigment melanopsin. Ablation of the melanopsin gene renders these cells insensitive to light; however, the precise role of melanopsin in supporting cellular photosensitivity is unconfirmed. Here we show that heterologous expression of human melanopsin in a mouse paraneuronal cell line (Neuro-2a) is sufficient to render these cells photoreceptive. Under such conditions, melanopsin acts as a sensory photopigment, coupled to a native ion channel via a G-protein signalling cascade, to drive physiological light detection. The melanopsin photoresponse relies on the presence of cis-isoforms of retinaldehyde and is selectively sensitive to short-wavelength light. We also present evidence to show that melanopsin functions as a bistable pigment in this system, having an intrinsic photoisomerase regeneration function that is chromatically shifted to longer wavelengths.  相似文献   

15.
视神经损伤引起斑马鱼视网膜神经细胞凋亡的研究   总被引:6,自引:0,他引:6  
用石蜡连续切片苏木精染色法,通过定量分析研究夹伤和切断视神经后,斑马鱼视网膜神经节细胞、视杆和视锥细胞密度的变化。结果发现,在损伤视神经7~21d后,上述3种细胞的细胞核密度均呈减少趋势,节细胞减少的比率大于感光细胞,而感光细胞中视锥细胞所受影响比视杆细胞更为明显;在夹伤和切断视神经两种情况中,后者引起视网膜神经节细胞核密度的减少更为显著。上述结果表明,损伤视神经不但影响与其相连的神经节细胞,而且可逆向跨神经元地影响感光细胞的变化。由上述结果推测,由于损伤视神经使视网膜神经节细胞失去靶组织而引起的各种神经细胞密度减少是视网膜中神经细胞凋亡的表现。  相似文献   

16.
Briggman KL  Helmstaedter M  Denk W 《Nature》2011,471(7337):183-188
The proper connectivity between neurons is essential for the implementation of the algorithms used in neural computations, such as the detection of directed motion by the retina. The analysis of neuronal connectivity is possible with electron microscopy, but technological limitations have impeded the acquisition of high-resolution data on a large enough scale. Here we show, using serial block-face electron microscopy and two-photon calcium imaging, that the dendrites of mouse starburst amacrine cells make highly specific synapses with direction-selective ganglion cells depending on the ganglion cell's preferred direction. Our findings indicate that a structural (wiring) asymmetry contributes to the computation of direction selectivity. The nature of this asymmetry supports some models of direction selectivity and rules out others. It also puts constraints on the developmental mechanisms behind the formation of synaptic connections. Our study demonstrates how otherwise intractable neurobiological questions can be addressed by combining functional imaging with the analysis of neuronal connectivity using large-scale electron microscopy.  相似文献   

17.
Independent regulation of calcium revealed by imaging dendritic spines   总被引:6,自引:0,他引:6  
P B Guthrie  M Segal  S B Kater 《Nature》1991,354(6348):76-80
The dendritic spine is a basic structural unit of neuronal organization. It is assumed to be a primary locus of synaptic plasticity, and to undergo long-term morphological and functional changes, at least some of which are regulated by intracellular calcium concentrations. It is known that physiological stimuli can cause marked increases in intracellular calcium levels in hippocampal dendritic shafts, but it is completely unknown to what extent such changes in the dendrites would also be seen by calcium-sensing structures within spines. Will calcium levels in all spines change in parallel with the dendrite or will there be a heterogeneous response? This study, through direct visualization and measurement of intracellular calcium concentrations in individual living spines, demonstrates that experimentally evoked changes in calcium concentrations in the dendritic shaft ([Ca2+]d).  相似文献   

18.
Functional connectivity in the retina at the resolution of photoreceptors   总被引:2,自引:0,他引:2  
To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol and small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long- and middle-wavelength-sensitive cones. However, only OFF midget cells frequently received strong input from short-wavelength-sensitive cones. ON and OFF midget cells showed a small non-random tendency to selectively sample from either long- or middle-wavelength-sensitive cones to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.  相似文献   

19.
Roska B  Werblin F 《Nature》2001,410(6828):583-587
The mammalian visual system analyses the world through a set of separate spatio-temporal channels. The organization of these channels begins in the retina, where the precise laminations of both the axon terminals of bipolar cells and the dendritic arborizations of ganglion cells suggests the presence of a vertical stack of neural strata at the inner plexiform layer (IPL). Conversely, many inhibitory amacrine cell classes are multiply or diffusely stratified, indicating that they might convey information between strata. On the basis of the diverse stratification and physiological properties of ganglion cells, it was suggested that the IPL contains a parallel set of representations of the visual world embodied in the strata and conveyed to higher centres by the classes of ganglion cells whose dendrites ramify at that stratum. Here we show that each stratum receives unique and substantively different excitatory and inhibitory neural inputs that are integrated to form at least ten different, parallel space-time spiking outputs. The response properties of these strata are ordered in the time domain. Inhibition through GABAC receptors extracts spatial edges in neural representations and seems to separate the functional properties of the strata. We describe a new form of neuronal interaction that we call 'vertical inhibition' that acts not laterally, but between strata.  相似文献   

20.
A S Ramoa  M Shadlen  B C Skottun  R D Freeman 《Nature》1986,321(6067):237-239
Neurones in the visual cortex are highly selective for orientation and spatial frequency of visual stimuli. There is strong neurophysiological evidence that orientation selectivity is enhanced by inhibitory interconnections between columns in the cortex which have different orientation sensitivities, an idea which is supported by experiments using neuropharmacological manipulation or complex visual stimuli. It has also been proposed that selectivity for spatial frequency is mediated in part by a similar mechanism to that for orientation, although evidence for this is based on special use of visual stimuli, which hampers interpretation of the findings. We have therefore examined selectivity for both orientation and spatial frequency using a technique which allows direct inferences about inhibitory processes. Our method uses microiontophoresis of an excitatory amino acid to elevate maintained discharge of single neurones in the visual cortex. We then present visual stimuli both within and outside the range of orientations and spatial frequencies which cause a cell to respond with increased discharge. Our results show that orientations presented on either side of the responsive range usually produce clear suppression of maintained discharge. In marked contrast, spatial frequencies shown to either side of the responsive range have little or no effect on maintained activity. We conclude that there is an intracortical organization of inhibitory connections between cells tuned to different orientations but not different spatial frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号