首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Receptor tyrosine kinases (RTK) have long being studied with respect to the “canonical” signaling. This includes ligand-induced activation of a receptor tyrosine kinase at the cell surface that leads to receptor dimerization, followed by its phosphorylation in the intracellular domain and activation. The activated receptor then recruits cytoplasmic signaling molecules including other kinases. Activation of the downstream signaling cascade frequently leads to changes in gene expression following nuclear translocation of downstream targets. However, RTK themselves may localize within the nucleus, as either full-length molecules or cleaved fragments, with or without their ligands. Significant differences in this mechanism have been reported depending on the individual RTK, cellular context or disease. Accumulating evidences indicate that the colony-stimulating factor-1 receptor (CSF-1R) may localize within the nucleus. To date, however, little is known about the mechanism of CSF-1R nuclear shuttling, as well as the functional role of nuclear CSF-1R.  相似文献   

3.
Cells have evolved to develop molecules and control mechanisms that guarantee correct chromosome segregation and ensure the proper distribution of genetic material to daughter cells. In this sense, the establishment, maintenance, and removal of sister chromatid cohesion is one of the most fascinating and dangerous processes in the life of a cell because errors in the control of these processes frequently lead to cell death or aneuploidy. The main protagonist in this mechanism is a four-protein complex denominated the cohesin complex. In the last 10 years, we have improved our understanding of the key players in the regulation of sister chromatid cohesion during cell division in mitosis and meiosis. The last 2 years have seen an increase in evidence showing that cohesins have important functions in non-dividing cells, revealing new, unexplored roles for these proteins in the control of gene expression, development, and other essential cell functions in mammals.  相似文献   

4.
The modular nature of apoptotic signaling proteins   总被引:9,自引:0,他引:9  
Apoptosis, initiated by a variety of stimuli, is a physiological process that engages a well-ordered signaling cascade, eventually leading to the controlled death of the cell. The most extensively studied apoptotic stimulus is the binding of death receptors related to CD95 (Fas/Apo1) by their respective ligands. During the last years, a considerable number of proteins have been identified which act together in the receptor-proximal part of the signaling pathway. Based on localized regions of sequence similarity, it has been predicted that these proteins consist of several independently folding domains. In several cases these predictions have been confirmed by structural studies; in other cases they are at least supported by experimental data. This review focuses on the three most widespread domain families found in the apoptotic signaling proteins: the death domain, the death effector domain and the caspase recruitment domain. The recently discovered analogies between these domains, both in structure and in function, have shed some light on the overall architecture of the pathway leading from death receptor ligation to the activation of caspases and eventually to the apoptotic phenotype. Received 8 October 1998; received after revision 8 January 1999; accepted 8 January 1999  相似文献   

5.
Lipid sensing and lipid sensors   总被引:2,自引:0,他引:2  
The field of bile acids has witnessed an impulse in the last two decades. This has been the result of cloning the genes encoding enzymes of bile acid synthesis and their transporters. There is no doubt that the identification of Farnesoid X Receptor (FXR, NR1H4) as the bile acid receptor has contributed substantially to attract the interest of scientists in this area. When FXR was cloned by Forman et al. [1], farnesol metabolites were initially considered the physiological ligands. After identifying FXR and other nuclear receptors as bile acid sensors [2-4], it has become clear that bile acids are involved in the regulation of lipid and glucose metabolism and that these molecules are eclectic regulators of diverse cellular functions. In this review, we will summarize the current knowledge of the functions regulated by bile acids and how their physiological receptors mediate the signaling underlying numerous cellular responses.  相似文献   

6.
The low-density lipoprotein (LDL) receptor is the prototype of a classical endocytosis receptor that mediates the uptake of extracellular ligands. Other members of the LDL receptor gene family, on the other hand, have been shown to regulate intracellular signalling cascades. Among these are the LDL receptor-related protein 1, LRP1, a promiscuous and ubiquitously expressed receptor which is critically involved in a multitude of diverse physiological processes; the Reelin receptors ApoER2 and VLDL receptor, which participate in neuronal development; and megalin, a multifunctional receptor expressed in various epithelia. In this review, we focus on recent developments that highlight similarities and differences between these related receptors and their biological function, and discuss open questions as to the underlying molecular mechanisms.  相似文献   

7.
MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.  相似文献   

8.
The Vps10p-domain receptor family   总被引:1,自引:1,他引:0  
The family of mammalian type-I transmembrane receptors containing a Vps10p domain contains five members, Sortilin, SorCS1, SorCS2, SorCS3, and SorLA. The common characteristic of these receptors is an N-terminal Vps10p domain, which either represents the only module of the luminal/extracellular moiety or is combined with additional domains. Family members play roles in protein transport and signal transduction. The individual receptors bind and internalize a variety of ligands, such as neuropeptides and trophic factors, and Sortilin and SorLA mediate trans-Golgi network-to-endosome sorting. Their prominent neuronal expression, several of the identified ligands, and recent results support the notion that members of this receptor family have important functions in neurogenesis, plasticity-related processes, and functional maintenance of the nervous system. For instance, it has been demonstrated that Sortilin partakes in the transduction of proapoptotic effects, and there is converging biochemical and genetic evidence that implies that SorLA is an Alzheimer’s disease risk factor.  相似文献   

9.
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.  相似文献   

10.
11.
12.
NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.  相似文献   

13.
Glucagon is a pancreatic peptide hormone that, as a counterregulatory hormone for insulin, stimulates glucose release by the liver and maintains glucose homeostasis. First described as a glucagon binding entity functionally linked to adenylyl cyclase, the glucagon receptor is a member of the family B receptors within the G protein coupled superfamily of seven transmembrane-spanning receptors. During the past decade, considerable progress has been made in the identification of the molecular determinants of the glucagon receptor that are important for ligand binding and signal transduction, in the development of glucagon analogs and of nonpeptide small molecules acting as receptor antagonists, and in the characterization of the mechanisms involved in the regulation of expression of the glucagon receptor gene. In the present review, the current knowledge of glucagon receptor structure, function and expression is described, with emphasis on the metabolic fate of glucagon and on the endocytosis and cell itinerary of both ligand and receptor.  相似文献   

14.
Netrins and netrin receptorsRID="†"ID="†" Review   总被引:5,自引:0,他引:5  
The formation of precise connections between neurons and their targets during development is dependent on extracellular guidance cues that allow growing axons to navigate to their targets. One family of such guidance molecules. conserved across all species examined, is that of the netrin/UNC-6 proteins. Netrins act to both attract and repel the growing axons of a broad range of neuronal cell types during development and are also involved in controling neuronal cell migration. These actions are mediated by specific receptor complexes containing either the colorectal cancer (DCC) or neogenin protein, in the case of the attractive receptor, or UNC-5-related proteins, in the case of the repellent receptor. Recent work has identified a key role for intracellular cyclic nucleotide levels in regulating the nature of the response of the growing axon to netrins as either attractive or repulsive. Netrin-DCC signaling has also been shown to regulate cell death in epithelial cells in vitro, raising the interesting possibility that netrins may also regulate cell death in the developing nervous system.  相似文献   

15.
Natural killer T (NKT) cells have been shown by a number of studies to play a protective role against cancers, autoimmune diseases and infectious diseases. Several glycolipids and phospholipids derived from mammalian, bacterial, protozoan and plant species have recently been identified as natural ligands (antigens) for NKT cells. Some of these glycolipid/phospholipid ligands have now been crystallized in forms bound to CD1d molecules, and the tertiary structure of these complexes has finally been revealed. This review is intended to list natural NKT cell ligands identified to date, and discuss how their structures relate to their propensity to bind CD1d molecules and, as a consequence, stimulate NKT cells. Received 14 February 2006; received after revision 31 March 2006; accepted 15 May 2006  相似文献   

16.
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell–microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor–host communication and stem cell niche are the main focus of this review.  相似文献   

17.
Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.  相似文献   

18.
Toll-like receptors (TLR) are pattern-recognition receptors that recognize a broad variety of structurally conserved molecules derived from microbes. The recognition of TLR ligands functions as a primary sensor of the innate immune system, leading to subsequent indirect activation of the adaptive immunity as well as none-immune cells. However, TLR are also expressed by several T cell subsets, and the respective ligands can directly modulate their effector functions. The present review summarizes the recent findings of γδ T cell modulation by TLR ligands. TLR1/2/6, 3, and 5 ligands can act directly in combination with T cell receptor (TCR) stimulation to enhance cytokine/chemokine production of freshly isolated human γδ T cells. In contrast to human γδ T cells, murine and bovine γδ T cells can directly respond to TLR2 ligands with increased proliferation and cytokine production in a TCR-independent manner. Indirect stimulatory effects on IFN-γ production of human and murine γδ T cells via TLR-ligand activated dendritic cells have been described for TLR2, 3, 4, 7, and 9 ligands. In addition, TLR3 and 7 ligands indirectly increase tumor cell lysis by human γδ T cells, whereas ligation of TLR8 abolishes the suppressive activity of human tumor-infiltrating Vδ1 γδ T cells on αβ T cells and dendritic cells. Taken together, these data suggest that TLR-mediated signals received by γδ T cells enhance the initiation of adaptive immune responses during bacterial and viral infection directly or indirectly. Moreover, TLR ligands enhance cytotoxic tumor responses of γδ T cells and regulate the suppressive capacity of γδ T cells.  相似文献   

19.
In this last decade, the structure and functions of the receptor for the urokinase-type plasminogen activator have been extensively studied and characterized. This interesting receptor plays a key role in cell adhesion, migration and proliferation. It was identified 20 years ago as the specific cell-surface molecule that could bind and concentrate urokinase on the cell membrane, thus initiating the proteolytic cascade promoted by the activation of plasminogen. The identification of new extracellular ligands, such as vitronectin, and of cell-surface interactors, such as integrins and fMet-Leu-Phe receptors, shed new light on its possible roles, totally independent of the enzymatic properties of its ligand. uPAR ligands and interactors and the functional consequences of the multiple binding capability of this intriguing receptor are reviewed here. Received 19 September 2005; received after revision 4 December 2005; accepted 6 December 2005  相似文献   

20.
Neurotrophins are growth factors implicated in the development and maintenance of different neuronal populations in the nervous system. Neurotrophins bind to two sets of receptors, Trk receptor tyrosine kinases and the p75NTR receptor, to activate several different signaling pathways that mediate various biological functions. While Trk receptor activation has been well-studied and triggers the well-characterized Ras/Rap-MAPK, PI3K-Akt, and PLCgamma-PKC cascades, p75NTR signaling is more complex, and its in vivo significance has not yet been completely determined. In the last few years, p75NTR has received much attention mainly due to recent findings describing pro-neurotrophins as new ligands for the receptor and the ability of the receptor to form different complexes with other transmembrane proteins. This review will update the neurotrophin signaling pathways known for Trk receptors to include newly identified Trk-interacting molecules and will address surprising new findings that suggest a role for p75NTR in different receptor complexes and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号