首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In smooth muscle the Mr 20,000 light chain of myosin is phosphorylated by a calmodulin-dependent protein kinase. It consists of 2 subunits: calmodulin, an acidic protein of Mr 17,000 that binds 4 moles of Ca2+; and a larger protein of Mr circa 130,000. Activation of the kinase is dependent upon their association in the presence of Ca2+. Cyclic AMP-dependent protein kinase phosphorylation of the myosin light chain kinase occurs at 2 sites. It decreases the affinity of the kinase for calmodulin and a reduction in the rate of light chain phosphorylation occurs. The kinase has an overall asymmetric shape composed of a globular head and tail region for the skeletal muscle enzyme. Trypsin digestion of this kinase releases a fragment of Mr 36,000 from the globular region that contains the catalytic and calmodulin binding sites. Chymotrypsin digestion of the kinase from smooth muscle generates a fragment of Mr 80,000 that does not contain the calmodulin binding or cyclic AMP-dependent protein kinase phosphorylation sites. It is a Ca2+-independent form of the kinase that phosphorylates the light chain of myosin. These structural features indicate a regulatory role for the kinase in smooth muscle phosphorylation and contraction.  相似文献   

2.
G Bailin 《Experientia》1984,40(11):1185-1188
In smooth muscle the Mr 20,000 light chain of myosin is phosphorylated by a calmodulin-dependent protein kinase. It consists of 2 subunits: calmodulin, an acidic protein of Mr 17,000 that binds 4 moles of Ca2+; and a larger protein of Mr circa 130,000. Activation of the kinase is dependent upon their association in the presence of Ca2+. Cyclic AMP-dependent protein kinase phosphorylation of the myosin light chain kinase occurs at 2 sites. It decreases the affinity of the kinase for calmodulin and a reduction in the rate of light chain phosphorylation occurs. The kinase has an overall asymmetric shape composed of a globular head and tail region for the skeletal muscle enzyme. Trypsin digestion of this kinase releases a fragment of Mr 36,000 from the globular region that contains the catalytic and calmodulin binding sites. Chymotrypsin digestion of the kinase from smooth muscle generates a fragment of Mr 80,000 that does not contain the calmodulin binding or cyclic AMP-dependent protein kinase phosphorylation sites. It is a Ca2+-independent form of the kinase that phosphorylates the light chain of myosin. These structural features indicate a regulatory role for the kinase in smooth muscle phosphorylation and contraction.  相似文献   

3.
Despite the absence of classical tyrosine kinases encrypted in the kinome of Plasmodium falciparum, biochemical analyses have detected significant tyrosine phosphorylation in its cell lysates. Supporting such phosphorylation is critical for parasite development. These observations have thus raised queries regarding the plasmodial enzymes accountable for tyrosine kinase activities in vivo. In the current investigation, immunoblot analysis intriguingly demonstrated that Pfnek3, a plasmodial mitogen-activated protein kinase kinase (MAPKK), displayed both serine/threonine and tyrosine kinase activities in autophosphorylation reactions as well as in phosphorylation of the exogenous myelin basic protein substrate. The results obtained strongly support Pfnek3 as a novel dual-specificity kinase of the malarial parasite, even though it displays a HGDLKSTN motif in the catalytic loop that resembles the consensus HRDLKxxN signature found in the serine/threonine kinases. Notably, its serine/threonine and tyrosine kinase activities were found to be distinctly influenced by Mg2+ and Mn2+ cofactors. Further probing into the regulatory mechanism of Pfnek3 also revealed tyrosine phosphorylation to be a crucial factor that stimulates its kinase activity. Through biocomputational analyses and functional assays, tyrosine residues Y117, Y122, Y172, and Y238 were proposed as phosphorylation sites essential for mediating the catalytic activities of Pfnek3. The discovery of Pfnek3’s dual role in phosphorylation marks its importance in closing the loop for cellular regulation in P. falciparum, which remains elusive to date.  相似文献   

4.
We have examined the effects of seven protein kinase inhibitors (staurosporine, genistein, methyl 2,5-dihydroxycinnamate, tyrphostins B44 and B46, lavendustin A and R03) on the erythrocytic cycle of the malaria parasite,Plasmodium falciparum. One (staurosporine) strongly inhibits serine/threonine kinases, but the remainder all exhibit a strong preference for tyrosine kinases. We have been able to discriminate between effects on invasion and on intraerythrocytic development. All reagents impeded development of intraerythrocytic parasites, though at widely differing concentrations, from the sub-micromolar to the millimolar. Several inhibitors, including staurosporine, also reduced invasion. The phosphatase inhibitor, okadaic acid, had a strong inhibitory effect both on invasion and development. The regulation of malaria development by phosphorylation or dephosphorylation reactions at several points in the blood-stage cycle is implied.  相似文献   

5.
Staurosporine aglycone (K252-c) (compound1) and arcyriaflavin A (2) were isolated from a specimen of the marine ascidian,Eudistoma sp., collected off the coast of West Africa. In addition to expressing micromolar and submicromolar inhibition of enzyme activity against seven protein kinase C isoenzymes and inhibition of proliferation of the human lung cancer A549 and P388 murine leukemia cell lines,1 also inhibited cell adhesion of the EL-4.IL-2 cell line and expressed activity in the K562 bleb and neutrophil assays.  相似文献   

6.
7.
Phosphatidylserine (PS), an activator of protein kinase C (PKC) in the assay of protein phosphorylation, inhibited this enzyme in a time-dependent manner following preincubation in the absence of Ca2+. The phospholipid-induced inactivation of kinase activity was dependent on the PS content and on the charge density of liposomes. This inactivation of PKC could be reduced, but not completely eliminated, by addition of Ca2+. In the present work the effect of a naturally occurring polyamine (spermine) on the PS-induced inactivation of PKC was investigated. The presence of spermine during preincubation without Ca2+ was effective in suppressing the PS-induced inactivation of PKC over the period (20 min) required for PS to inhibit the enzyme by 95%. PKC exists in two membrane-bound states: a reversible one which can be dissociated by Ca2+ chelators (membrane-associated form) and an irreversible one which is chelator-stable (membrane-inserted form). Gel filtration experiments on the PKC-PS complex formed in the presence of Ca2+ indicated that less insertion of enzyme into liposomes occurred in the presence of spermine and that the kinase activity of the reversibly membrane-associated PKC was protected from PS inactivation.  相似文献   

8.
Unique evolution of Bivalvia arginine kinases   总被引:1,自引:0,他引:1  
The clams Pseudocardium, Solen, Corbicula and Ensis possess a unique form of arginine kinase (AK) with a molecular mass of 80 kDa and an unusual two-domain structure, a result of gene duplication and subsequent fusion. These AKs also lack two functionally important amino acid residues, Asp62 and Arg193, which are strictly conserved in other 40-kDa AKs and are assumed to be key residues for stabilizing the substrate-bound structure. However, these AKs show higher enzyme activity. The cDNA-derived amino acid sequences of 40-kDa AKs from the blood clam Scapharca broughtonii and the oyster Crassostrea gigas were determined. While Asp62 and Arg193 are conserved in Scapharca AK, these two key residues are replaced by Asn and Lys, respectively, in Crassostrea AK. The native enzyme from Crassostrea and both of the recombinant enzymes show an enzyme activity similar to that of two-domain clam AKs and at least twofold higher than that of other molluskan AKs. Although the replacement of Asp62 or Arg193 by Gly in normal AK causes a considerable decrease in Vmax (6–15% of wild-type enzyme) and a two- to threefold increase in Km for arginine, the same replacement in Scapharca AK had no pronounced effect on enzyme activity. Together with the observation that bivalve AKs are phylogenetically distinct from other molluskan AKs, these results suggest that bivalve AKs have undergone a unique molecular evolution; the characteristic stabilizing function of residues 62 and 193 has been lost and, consequently, the enzyme shows higher activity than normal.Received 14 October 2003; accepted 1 November 2003  相似文献   

9.
A A Hakim 《Experientia》1979,35(10):1378-1380
Cyclic-AMP-dependent protein kinase activity was depressed in whole spleen as well as in isolated splenic lymphocytes from 3-methylcholanthrene (MCA), R3230 AdCa mammary adenocarcinoma, N-hydroxy-2-acetylaminofluorene, and 4-dimethylaminoazobenzene (DMAAB) tumor-bearing Fischer rats as compared to control animals. The magnitude of depression increased with the immunogenicity of the tumor. The depressed enzyme activity was the result of a reduced Vmax for adenosine 3',5'-monophosphate (cAMP)-stimulated histone phosphorylation.  相似文献   

10.
The Antarctic marine spongeTedania charcoti has been shown to contain extraordinarily high natural concentrations of cadmium and zinc, which have in turn been correlated to the ability of the crude ethanol extract to modulate protein phosphorylation in chicken forebrain and to inhibit the growth of several test bacteria.  相似文献   

11.
The PAS domain kinase PASKIN, also termed PAS kinase or PASK, is an evolutionarily conserved potential sensor kinase related to the heme-based oxygen sensors of nitrogen-fixing bacteria. In yeast, the two PASKIN homologs link energy flux and protein synthesis following specific stress conditions. In mammals, PASKIN may regulate glycogen synthesis and protein translation. Paskin knock-out mice do not show any phenotype under standard animal husbandry conditions. Interestingly, these mice seem to be protected from the symptoms of the metabolic syndrome when fed a high-fat diet. Energy turnover might be increased in specific PASKIN-deficient cell types under distinct environmental conditions. According to the current model, binding of a putative ligand to the PAS domain disinhibits the kinase domain and activates PASKIN auto- and target phosphorylation. Future research needs to be conducted to elucidate the nature of the putative ligand and the molecular mechanisms of downstream signalling by PASKIN. Received 2 November 2008; received after revision 10 December 2008; accepted 5 January 2009  相似文献   

12.
Summary The effects of serotonin on the formation of inositol phosphates and protein phosphorylation were examined in cultured smooth muscle cells. Serotonin stimulated the formation of [3H]inositol monophosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. This effect was prevented by 5-HT2 specific antagonist, 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 2-hydroxy-1-methylpropyl ester [Z]-2-butenedioate (LY53857). Serotonin stimulated the phosphorylation of many polypeptides, among which a 20 kDa polypeptide was the most prominent. The phosphorylation was also inhibited by LY53857. LY53857 alone produced no effects on protein phosphorylation. The 20 kDa polypeptides were also phosphorylated by the addition of 12-O-tetradecanoylphorbol-13-acetate. These results suggest that serotonin stimulates protein phosphorylation through 5-HT2 receptors and possibly activates protein kinase C in intact vascular smooth muscle cells.Part of the data contained in this paper was presented at the 74th local meeting of the Japanese Society of Pharmacology at Kanagawa.  相似文献   

13.
14.
Although the yeast genome does not encode bona fide protein tyrosine kinases, tyrosine-phosphorylated proteins are numerous, suggesting that besides dual-specificity kinases, some Ser/Thr kinases are also committed to tyrosine phosphorylation in Saccharomyces cerevisiae. Here we show that blockage of the highly pleiotropic Ser/Thr kinase CK2 with a specific inhibitor synergizes with the overexpression of Stp1 low-molecular-weight protein tyrosine phosphatase (PTP) in inducing a severe growth-defective phenotype, consistent with a prominent role for CK2 in tyrosine phosphorylation in yeast. We also present in vivo evidence that immunophilin Fpr3, the only tyrosine-phosphorylated CK2 substrate recognized so far, interacts with and is dephosphorylated by Spt1. These data disclose a functional correlation between CK2 and LMW-PTPs, and suggest that reversible phosphorylation of Fpr3 plays a role in the regulation of growth rate and budding in S. cerevisiae.Received 15 January 2004; received after revision 20 February 2004; accepted 4 March 2004  相似文献   

15.
The effects of a potent phosphatase inhibitor, calyculin A (CL-A), on inward currents in guinea pig taenia coli smooth muscle cells were examined. CL-A increased the inward current, and this effect of CL-A was inhibited by a protein kinase C inhibitor, H-7, and by nifedipine. Phorbol 12,13-dibutyrate, an activator of protein kinase C, also increased the inward current and this effect was antagonized by H-7. These results suggest that in guinea pig taenia coli smooth muscle cells CL-A may facilitate the opening of thel-type Ca2+ channels through the protein kinase C-dependent phosphorylation system.  相似文献   

16.
A mitogen-activated protein kinase (MAPK), Pfmap2, has been identified in Plasmodium falciparum. However, its bona fide activator remains elusive as no MAPK kinase (MAPKK) homologues have been found so far. Instead, Pfnek3, a NIMA (never in mitosis, Aspergillus)-related kinase, was earlier reported to display a MAPKK-like activity due to its activating effect on Pfmap2. In this study, the regulatory mechanism of Pfnek3 was investigated. Pfnek3 was found to possess a SSEQSS motif within its activation loop that fulfills the consensus SXXXS/T phospho-activating sequence of MAPKKs. Functional analyses of the SSEQSS motif by site-directed mutagenesis revealed that phosphorylation of residues S221 and S226 is essential for mediating Pfnek3 activity. Moreover, via tandem mass-spectrometry, residue T82 was uncovered as an additional phosphorylation site involved in Pfnek3 activation. Collectively, these results provide valuable insights into the potential in vivo regulation of Pfnek3, with residues T82, S221 and S226 functioning as phospho-activating sites.  相似文献   

17.
In plants, RNA editing is a process for converting a specific nucleotide of RNA from C to U and less frequently from U to C in mitochondria and plastids. To specify the site of editing, the cis-element adjacent to the editing site functions as a binding site for the trans-acting factor. Genetic approaches using Arabidopsis thaliana have clarified that a member of the protein family with pentatricopeptide repeat (PPR) motifs is essential for RNA editing to generate a translational initiation codon of the chloroplast ndhD gene. The PPR motif is a highly degenerate unit of 35 amino acids and appears as tandem repeats in proteins that are involved in RNA maturation steps in mitochondria and plastids. The Arabidopsis genome encodes approximately 450 members of the PPR family, some of which possibly function as trans-acting factors binding the cis-elements of the RNA editing sites to facilitate access of an unidentified RNA editing enzyme. Based on this breakthrough in the research on plant RNA editing, I would like to discuss the possible steps of co-evolution of RNA editing events and PPR proteins. Received 30 September 2005; received after revision 5 November 2005; accepted 28 November 2005  相似文献   

18.
Adducin: structure, function and regulation   总被引:7,自引:0,他引:7  
Adducin is a ubiquitously expressed membrane-skeletal protein localized at spectrin-actin junctions that binds calmodulin and is an in vivo substrate for protein kinase C (PKC) and Rho-associated kinase. Adducin is a tetramer comprised of either alpha/beta or alpha/gamma heterodimers. Adducin subunits are related in sequence and all contain an N-terminal globular head domain, a neck domain and a C-terminal protease-sensitive tail domain. The tail domains of all adducin subunits end with a highly conserved 22-residue myristoylated alanine-rich C kinase substrate (MARCKS)-related domain that has homology to MARCKS protein. Adducin caps the fast-growing ends of actin filaments and also preferentially recruits spectrin to the ends of filaments. Both the neck and the MARCKS-related domains are required for these activities. The neck domain self-associates to form oligomers. The MARCKS-related domain binds calmodulin and contains the major phosphorylation site for PKC. Calmodulin, gelsolin and phosphorylation by the kinase inhibit in vitro activities of adducin involving actin and spectrin. Recent observations suggest a role for adducin in cell motility, and as a target for regulation by Rho-dependent and Ca2+-dependent pathways. Prominent physiological sites of regulation of adducin include dendritic spines of hippocampal neurons, platelets and growth cones of axons.  相似文献   

19.
The phytotoxic protein PcF (Phytophthora cactorum-Fragaria) is a 5.6-kDa cysteine-rich, hydroxyproline- containing protein that is secreted in limited amounts by P. cactorum, an oomycete pathogen of tomato, strawberry and other relevant crop plants. Although we have shown that pure PcF triggers plant reactivity, its mechanism of action is not yet understood. Here we show that PcF, like other known fungal protein elicitors involved in pathogen-plant interaction, stimulates the activity of the defense enzyme phenylalanine ammonia a key step in understanding the mechanism of action of PcF at a molecular level is knowledge of its three-dimensional structure, we overexpressed this protein extracellularly in Pichia pastoris. The preliminary structural and functional characterization of a recombinant PcF homologue, N4-rPcF, is reported. Interestingly, although N4-rPcF is devoid of proline hydroxylation and has four additional amino acid residues attached to its N terminus, its secondary structure and biological activity are indistinguishable from wild-type PcF.Received 22 February 2003; received after revision 25 March 2003; accepted 14 April 2003  相似文献   

20.
The use of marginal donor livers is followed by a higher frequency of primary dys- or nonfunction after transplantation. The present study was designed to test the hypothesis that stimulation of the cAMP second-messenger signal pathway might protect the liver from ischemic injury, laying emphasis on the role of protein kinase A-mediated signal transduction.?Rat livers were harvested after 45 min of cardiac arrest and preserved in HTK solution for 24 h. Hepatic integrity was assessed thereafter using a blood-free reperfusion model.?Supplementation of the preservation solution with dibutyryl-cAMP (db-cAMP) promoted phosphorylation of BAD at Ser 112 and concomitantly mitigated mitochondrial release of cytochrome c into the cytosol. Apoptotic cell transformation was evident in reperfused livers by positive TUNEL-staining of sinusoidal lining cells and the detection of cleaved poly(ADP-ribose) polymerase (PARP) in tissue homogenates by western analysis. Treatment with db-cAMP was effective in minimizing both TUNEL staining and PARP cleavage and significantly reduced postischemic enzyme leakage of alanine aminotransferase to one half, while hepatic bile production was enhanced by approximately 60% when compared to untreated livers. This functional improvement was accompanied by a net amelioration of portal vascular conductivity. Inhibition of A kinase-anchoring protein with HT31 completely reversed any of the observed effects obtained by db-cAMP.?We conclude that enhancement of cellular cAMP signal maintains hepatic integrity during and after ischemic preservation which may be attributed to protein kinase A dependent phosphorylation of BAD in line with subsequent inhibition of mitochondria-initiated apoptosis of sinusoidal lining cells. Received 12 July 2001; received after revision 14 August 2001; accepted 14 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号