首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Etienne-Manneville S  Hall A 《Nature》2003,421(6924):753-756
Cell polarity is a fundamental property of all cells. In higher eukaryotes, the small GTPase Cdc42, acting through a Par6-atypical protein kinase C (aPKC) complex, is required to establish cellular asymmetry during epithelial morphogenesis, asymmetric cell division and directed cell migration. However, little is known about what lies downstream of this complex. Here we show, through the use of primary rat astrocytes in a cell migration assay, that Par6-PKCzeta interacts directly with and regulates glycogen synthase kinase-3beta (GSK-3beta) to promote polarization of the centrosome and to control the direction of cell protrusion. Cdc42-dependent phosphorylation of GSK-3beta occurs specifically at the leading edge of migrating cells, and induces the interaction of adenomatous polyposis coli (Apc) protein with the plus ends of microtubules. The association of Apc with microtubules is essential for cell polarization. We conclude that Cdc42 regulates cell polarity through the spatial regulation of GSK-3beta and Apc. This role for Apc may contribute to its tumour-suppressor activity.  相似文献   

2.
Fukui Y  Hashimoto O  Sanui T  Oono T  Koga H  Abe M  Inayoshi A  Noda M  Oike M  Shirai T  Sasazuki T 《Nature》2001,412(6849):826-831
Cell migration is a fundamental biological process involving membrane polarization and cytoskeletal dynamics, both of which are regulated by Rho family GTPases. Among these molecules, Rac is crucial for generating the actin-rich lamellipodial protrusion, a principal part of the driving force for movement. The CDM family proteins, Caenorhabditis elegans CED-5, human DOCK180 and Drosophila melanogaster Myoblast City (MBC), are implicated to mediate membrane extension by functioning upstream of Rac. Although genetic analysis has shown that CED-5 and Myoblast City are crucial for migration of particular types of cells, physiological relevance of the CDM family proteins in mammals remains unknown. Here we show that DOCK2, a haematopoietic cell-specific CDM family protein, is indispensable for lymphocyte chemotaxis. DOCK2-deficient mice (DOCK2-/-) exhibited migration defects of T and B lymphocytes, but not of monocytes, in response to chemokines, resulting in several abnormalities including T lymphocytopenia, atrophy of lymphoid follicles and loss of marginal-zone B cells. In DOCK2-/- lymphocytes, chemokine-induced Rac activation and actin polymerization were almost totally abolished. Thus, in lymphocyte migration DOCK2 functions as a central regulator that mediates cytoskeletal reorganization through Rac activation.  相似文献   

3.
Katoh H  Negishi M 《Nature》2003,424(6947):461-464
The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance. Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2-4). Dock180 does not contain a conventional catalytic domain for guanine nucleotide exchange on Rac, but possesses a domain that directly binds to and specifically activates Rac1 (refs 5, 6). The small GTPase RhoG mediates several cellular morphological processes, such as neurite outgrowth in neuronal cells, through a signalling cascade that activates Rac1 (refs 7-12); however, the downstream target of RhoG and the mechanism by which RhoG regulates Rac1 activity remain unclear. Here we show that RhoG interacts directly with Elmo in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG-Elmo-Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. We conclude that RhoG activates Rac1 through Elmo and Dock180 to control cell morphology.  相似文献   

4.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   

5.
Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.  相似文献   

6.
Lanzetti L  Palamidessi A  Areces L  Scita G  Di Fiore PP 《Nature》2004,429(6989):309-314
Rab5 is a small GTPase involved in the control of intracellular trafficking, both at the level of receptor endocytosis and endosomal dynamics. The finding that Rab5 can be activated by receptor tyrosine kinases (RTK) raised the question of whether it also participates in effector pathways emanating from these receptors. Here we show that Rab5 is indispensable for a form of RTK-induced actin remodelling, called circular ruffling. Three independent signals, originating from Rab5, phosphatidylinositol-3-OH kinase and Rac, respectively, are simultaneously required for the induction of circular ruffles. Rab5 signals to the actin cytoskeleton through RN-tre, a previously identified Rab5-specific GTPase-activating protein (GAP). Here we demonstrate that RN-tre has the dual function of Rab5-GAP and Rab5 effector. We also show that RN-tre is critical for macropinocytosis, a process previously connected to the formation of circular ruffles. Finally, RN-tre interacts with both F-actin and actinin-4, an F-actin bundling protein. We propose that RN-tre establishes a three-pronged connection with Rab5, F-actin and actinin-4. This may aid crosslinking of actin fibres into actin networks at the plasma membrane. Thus, we have shown that Rab5 is a signalling GTPase and have elucidated the major molecular elements of its downstream pathway.  相似文献   

7.
Mamdouh Z  Chen X  Pierini LM  Maxfield FR  Muller WA 《Nature》2003,421(6924):748-753
Leukocytes enter sites of inflammation by squeezing through the borders between endothelial cells that line postcapillary venules at that site. This rapid process, called transendothelial migration (TEM) or diapedesis, is completed within 90 s after a leukocyte arrests on the endothelial surface. In this time, the leukocyte moves in ameboid fashion across the endothelial borders, which remain tightly apposed to it during transit. It is not known how the endothelial cell changes its borders rapidly and reversibly to accommodate the migrating leukocyte. Here we show that there is a membrane network just below the plasmalemma at the cell borders that is connected at intervals to the junctional surface. PECAM-1, an integral membrane protein with an essential role in TEM, is found in this compartment and constitutively recycles evenly along endothelial cell borders. During TEM, however, recycling PECAM is targeted to segments of the junction across which monocytes are in the act of migration. In addition, blockade of TEM with antibodies against PECAM specifically blocks the recruitment of this membrane to the zones of leukocyte migration, without affecting the constitutive membrane trafficking.  相似文献   

8.
Choi MH  Lee IK  Kim GW  Kim BU  Han YH  Yu DY  Park HS  Kim KY  Lee JS  Choi C  Bae YS  Lee BI  Rhee SG  Kang SW 《Nature》2005,435(7040):347-353
Platelet-derived growth factor (PDGF) is a potent mitogenic and migratory factor that regulates the tyrosine phosphorylation of a variety of signalling proteins via intracellular production of H2O2 (refs 1, 2-3). Mammalian 2-Cys peroxiredoxin type II (Prx II; gene symbol Prdx2) is a cellular peroxidase that eliminates endogenous H2O2 produced in response to growth factors such as PDGF and epidermal growth factor; however, its involvement in growth factor signalling is largely unknown. Here we show that Prx II is a negative regulator of PDGF signalling. Prx II deficiency results in increased production of H2O2, enhanced activation of PDGF receptor (PDGFR) and phospholipase Cgamma1, and subsequently increased cell proliferation and migration in response to PDGF. These responses are suppressed by expression of wild-type Prx II, but not an inactive mutant. Notably, Prx II is recruited to PDGFR upon PDGF stimulation, and suppresses protein tyrosine phosphatase inactivation. Prx II also leads to the suppression of PDGFR activation in primary culture and a murine restenosis model, including PDGF-dependent neointimal thickening of vascular smooth muscle cells. These results demonstrate a localized role for endogenous H2O2 in PDGF signalling, and indicate a biological function of Prx II in cardiovascular disease.  相似文献   

9.
EPS8 and E3B1 transduce signals from Ras to Rac.   总被引:27,自引:0,他引:27  
The small guanine nucleotide (GTP)-binding protein Rac regulates mitogen-induced cytoskeletal changes and c-Jun amino-terminal kinase (JNK), and its activity is required for Ras-mediated cell transformation. Epistatic analysis placed Rac as a key downstream target in Ras signalling; however, the biochemical mechanism regulating the cross-talk among these small GTP-binding proteins remains to be elucidated. Eps8 (relative molecular mass 97,000) is a substrate of receptors with tyrosine kinase activity which binds, through its SH3 domain, to a protein designated E3b1/Abi-1. Here we show that Eps8 and E3b1/Abi-1 participate in the transduction of signals from Ras to Rac, by regulating Rac-specific guanine nucleotide exchange factor (GEF) activities. We also show that Eps8, E3b1 and Sos-1 form a tri-complex in vivo that exhibits Rac-specific GEF activity in vitro. We propose a model in which Eps8 mediates the transfer of signals between Ras and Rac, by forming a complex with E3b1 and Sos-1.  相似文献   

10.
Members of the Wiskott-Aldrich syndrome protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation with the Arp2/3 complex. The WASP relative WAVE regulates lamellipodia formation within a 400-kilodalton, hetero-pentameric WAVE regulatory complex (WRC). The WRC is inactive towards the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. Here we report the 2.3-?ngstrom crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting the way in which these signals stimulate WRC activity towards the Arp2/3 complex. The spatial proximity of the Rac binding site and the large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.  相似文献   

11.
12.
Rapid leukocyte migration by integrin-independent flowing and squeezing   总被引:1,自引:0,他引:1  
All metazoan cells carry transmembrane receptors of the integrin family, which couple the contractile force of the actomyosin cytoskeleton to the extracellular environment. In agreement with this principle, rapidly migrating leukocytes use integrin-mediated adhesion when moving over two-dimensional surfaces. As migration on two-dimensional substrates naturally overemphasizes the role of adhesion, the contribution of integrins during three-dimensional movement of leukocytes within tissues has remained controversial. We studied the interplay between adhesive, contractile and protrusive forces during interstitial leukocyte chemotaxis in vivo and in vitro. We ablated all integrin heterodimers from murine leukocytes, and show here that functional integrins do not contribute to migration in three-dimensional environments. Instead, these cells migrate by the sole force of actin-network expansion, which promotes protrusive flowing of the leading edge. Myosin II-dependent contraction is only required on passage through narrow gaps, where a squeezing contraction of the trailing edge propels the rigid nucleus.  相似文献   

13.
Sin WC  Haas K  Ruthazer ES  Cline HT 《Nature》2002,419(6906):475-480
Previous studies suggest that neuronal activity may guide the development of synaptic connections in the central nervous system through mechanisms involving glutamate receptors and GTPase-dependent modulation of the actin cytoskeleton. Here we demonstrate by in vivo time-lapse imaging of optic tectal cells in Xenopus laevis tadpoles that enhanced visual activity driven by a light stimulus promotes dendritic arbor growth. The stimulus-induced dendritic arbor growth requires glutamate-receptor-mediated synaptic transmission, decreased RhoA activity and increased Rac and Cdc42 activity. The results delineate a role for Rho GTPases in the structural plasticity driven by visual stimulation in vivo.  相似文献   

14.
W C Forrester  M Dell  E Perens  G Garriga 《Nature》1999,400(6747):881-885
Ror kinases are a family of orphan receptors with tyrosine kinase activity that are related to muscle specific kinase (MuSK), a receptor tyrosine kinase that assembles acetylcholine receptors at the neuromuscular junction. Although the functions of Ror kinases are unknown, similarities between Ror and MuSK kinases have led to speculation that Ror kinases regulate synaptic development. Here we show that the Caenorhabditis elegans gene cam-1 encodes a member of the Ror kinase family that guides migrating cells and orients the polarity of asymmetric cell divisions and axon outgrowth. We find that tyrosine kinase activity is required for some of the functions of CAM-1, but not for its role in cell migration. CAM-1 is expressed in cells that require its function, and acts cell autonomously in migrating neurons. Overexpression and loss of cam-1 function result in reciprocal cell-migration phenotypes, indicating that levels of CAM-1 influence the final positions of migrating cells. Our results raise the possibility that Ror kinases regulate cell motility and asymmetric cell division in organisms as diverse as nematodes and mammals.  相似文献   

15.
采用数值模拟方法研究了旋转工况下球窝/球凸结构对通道传热特性和阻力特性的影响,利用SSTk-ω湍流模型求解了黏性Navier-Stokes方程,其中矩形通道的一侧布置球凸,另一侧布置球窝,球窝/球凸的结构分为圆形、竖椭圆和横椭圆.研究结果表明:球凸的迎风前缘传热能力大大增强,背风后缘及其之后的尾迹区域出现流动分离且传热性能有所减弱;球窝的前缘出现了流动分离且传热性能明显减弱,后半球窝处的分离流体再附使传热能力增强.通道旋转对传热阻力特性的影响很大,主要是旋转使得球窝/球凸表面的流动分离再附提前发生或延迟出现,后缘面流动分离再附频繁出现.比较3种通道发现:竖椭圆球窝/球凸通道和圆形球窝/球凸通道的平均Nu和摩擦系数几乎相等,横椭圆球窝/球凸通道的平均Nu和摩擦系数明显大于圆形、竖椭圆通道.  相似文献   

16.
Rac GTPases control axon growth, guidance and branching   总被引:14,自引:0,他引:14  
Ng J  Nardine T  Harms M  Tzu J  Goldstein A  Sun Y  Dietzl G  Dickson BJ  Luo L 《Nature》2002,416(6879):442-447
Growth, guidance and branching of axons are all essential processes for the precise wiring of the nervous system. Rho family GTPases transduce extracellular signals to regulate the actin cytoskeleton. In particular, Rac has been implicated in axon growth and guidance. Here we analyse the loss-of-function phenotypes of three Rac GTPases in Drosophila mushroom body neurons. We show that progressive loss of combined Rac1, Rac2 and Mtl activity leads first to defects in axon branching, then guidance, and finally growth. Expression of a Rac1 effector domain mutant that does not bind Pak rescues growth, partially rescues guidance, but does not rescue branching defects of Rac mutant neurons. Mosaic analysis reveals both cell autonomous and non-autonomous functions for Rac GTPases, the latter manifesting itself as a strong community effect in axon guidance and branching. These results demonstrate the central role of Rac GTPases in multiple aspects of axon development in vivo, and suggest that axon growth, guidance and branching could be controlled by differential activation of Rac signalling pathways.  相似文献   

17.
The removal of apoptotic cells is essential for the physiological well being of the organism. In Caenorhabditis elegans, two conserved, partially redundant genetic pathways regulate this process. In the first pathway, the proteins CED-2, CED-5 and CED-12 (mammalian homologues CrkII, Dock180 and ELMO, respectively) function to activate CED-10 (Rac1). In the second group, the candidate receptor CED-1 (CD91/LRP/SREC) probably recognizes an unknown ligand on the apoptotic cell and signals via its cytoplasmic tail to the adaptor protein CED-6 (hCED-6/GULP), whereas CED-7 (ABCA1) is thought to play a role in membrane dynamics. Molecular understanding of how the second pathway promotes engulfment of the apoptotic cell is lacking. Here, we show that CED-1, CED-6 and CED-7 are required for actin reorganization around the apoptotic cell corpse, and that CED-1 and CED-6 colocalize with each other and with actin around the dead cell. Furthermore, we find that the CED-10(Rac) GTPase acts genetically downstream of these proteins to mediate corpse removal, functionally linking the two engulfment pathways and identifying the CED-1, -6 and -7 signalling module as upstream regulators of Rac activation.  相似文献   

18.
19.
W Wu  K Wong  J Chen  Z Jiang  S Dupuis  J Y Wu  Y Rao 《Nature》1999,400(6742):331-336
Although cell migration is crucial for neural development, molecular mechanisms guiding neuronal migration have remained unclear. Here we report that the secreted protein Slit repels neuronal precursors migrating from the anterior subventricular zone in the telencephalon to the olfactory bulb. Our results provide a direct demonstration of a molecular cue whose concentration gradient guides the direction of migrating neurons. They also support a common guidance mechanism for axon projection and neuronal migration and suggest that Slit may provide a molecular tool with potential therapeutic applications in controlling and directing cell migration.  相似文献   

20.
Using the molecular dynamics method,we have constructed two kink models corresponding to the 〈100〉{010} and 〈100〉{011} edge dislocations (EDs) in body centred cubic (bcc) Fe. It is found that the geometric structure of a kink depends on the type of edge dislocation and the structural energies of the atoms sites in the dislocation core region. The formation energies,migration energies and widths of the kinks in different types of EDs are calculated. The results show that formation and migration of the kink in the 〈100〉{010} edge dislocation are difficult. The 〈100〉{011} edge dislocation moves primarily through kink nucleation,rather than kink migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号