首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipolar supercurrent in graphene   总被引:3,自引:0,他引:3  
Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.  相似文献   

2.
Electronic transport through nanostructures is greatly affected by the presence of superconducting leads. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states-that is, the quantized single particle energy states of a quantum dot, or 'artificial atom', placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory, that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes.  相似文献   

3.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   

4.
从理论上研究了拓扑绝缘体量子点中的磁交换相互作用.在拓扑绝缘体量子点中,边缘态电子数可以通过量子点的尺寸和外加电场进行调控.当量子点中掺入单个磁离子并且边缘态填充奇数电子时,电子与单个磁离子之间的交换相互作用达到最大值;而边缘态填充偶数电子时,电子与单个磁离子之间的交换相互作用消失.当量子点中掺入2个磁离子时,电子与Mn离子的sp-d相互作用会出现奇偶振荡行为,Mn离子间的相互作用取决于Mn离子间距和量子点壳层中的电子数,表现出典型的Ruderman-Kittel-Kasuya-Yosida型间接交换机制.工作澄清了拓扑绝缘体量子点壳层结构对其磁性的影响,有助于人们设计基于拓扑绝缘体量子点的自旋电子学或量子信息器件.  相似文献   

5.
Comforti E  Chung YC  Heiblum M  Umansky V  Mahalu D 《Nature》2002,416(6880):515-518
Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears. For increasingly opaque barriers, the measured charge increases monotonically, approaching q=e asymptotically. It was therefore believed that only electrons, or alternatively, three bunched quasiparticles, can tunnel through high-potential barriers encountered by a noiseless current of quasiparticles. Here we investigate the interaction of e/3 quasiparticles with a strong barrier in FQH samples and find that bunching of quasiparticles in the strong backscattering limit depends on the average dilution of the quasiparticle current. For a very dilute current, bunching ceases altogether and the transferred charge approaches q=e/3. This surprising result demonstrates that quasiparticles can tunnel individually through high-potential barriers originally thought to be opaque for them.  相似文献   

6.
To study and control the behaviour of the spins of electrons that are moving through a metal or semiconductor is an outstanding challenge in the field of 'spintronics', where possibilities for new electronic applications based on the spin degree of freedom are currently being explored. Recently, electrical control of spin coherence and coherent spin precession during transport was studied by optical techniques in semiconductors. Here we report controlled spin precession of electrically injected and detected electrons in a diffusive metallic conductor, using tunnel barriers in combination with metallic ferromagnetic electrodes as spin injector and detector. The output voltage of our device is sensitive to the spin degree of freedom only, and its sign can be switched from positive to negative, depending on the relative magnetization of the ferromagnetic electrodes. We show that the spin direction can be controlled by inducing a coherent spin precession caused by an applied perpendicular magnetic field. By inducing an average precession angle of 180 degrees, we are able to reverse the sign of the output voltage.  相似文献   

7.
Bayer M  Stern O  Hawrylak P  Fafard S  Forchel A 《Nature》2000,405(6789):923-926
Quantum dots or 'artificial atoms' are of fundamental and technological interest--for example, quantum dots may form the basis of new generations of lasers. The emission in quantum-dot lasers originates from the recombination of excitonic complexes, so it is important to understand the dot's internal electronic structure (and of fundamental interest to compare this to real atomic structure). Here we investigate artificial electronic structure by injecting optically a controlled number of electrons and holes into an isolated single quantum dot. The charge carriers form complexes that are artificial analogues of hydrogen, helium, lithium, beryllium, boron and carbon excitonic atoms. We observe that electrons and holes occupy the confined electronic shells in characteristic numbers according to the Pauli exclusion principle. In each degenerate shell, collective condensation of the electrons and holes into coherent many-exciton ground states takes place; this phenomenon results from hidden symmetries (the analogue of Hund's rules for real atoms) in the energy function that describes the multi-particle system. Breaking of the hidden symmetries leads to unusual quantum interferences in emission involving excited states.  相似文献   

8.
Coherent properties of a two-level system based on a quantum-dot photodiode   总被引:3,自引:0,他引:3  
Zrenner A  Beham E  Stufler S  Findeis F  Bichler M  Abstreiter G 《Nature》2002,418(6898):612-614
Present-day information technology is based mainly on incoherent processes in conventional semiconductor devices. To realize concepts for future quantum information technologies, which are based on coherent phenomena, a new type of 'hardware' is required. Semiconductor quantum dots are promising candidates for the basic device units for quantum information processing. One approach is to exploit optical excitations (excitons) in quantum dots. It has already been demonstrated that coherent manipulation between two excitonic energy levels--via so-called Rabi oscillations--can be achieved in single quantum dots by applying electromagnetic fields. Here we make use of this effect by placing an InGaAs quantum dot in a photodiode, which essentially connects it to an electric circuit. We demonstrate that coherent optical excitations in the quantum-dot two-level system can be converted into deterministic photocurrents. For optical excitation with so-called pi-pulses, which completely invert the two-level system, the current is given by I = fe, where f is the repetition frequency of the experiment and e is the elementary charge. We find that this device can function as an optically triggered single-electron turnstile.  相似文献   

9.
Superconducting circuits that incorporate Josephson junctions are of considerable experimental and theoretical interest, particularly in the context of quantum computing. A nanometre-sized superconducting grain (commonly referred to as a Cooper-pair box) connected to a reservoir by a Josephson junction is an important example of such a system. Although the grain contains a large number of electrons, it has been experimentally demonstrated that its states are given by a superposition of only two charge states (differing by 2e, where e is the electronic charge). Coupling between charge transfer and mechanical motion in nanometre-sized structures has also received considerable attention. Here we demonstrate theoretically that a movable Cooper-pair box oscillating periodically between two remote superconducting electrodes can serve as a mediator of Josephson coupling, leading to coherent transfer of Cooper pairs between the electrodes. Both the magnitude and the direction of the resulting Josephson current can be controlled by externally applied electrostatic fields.  相似文献   

10.
Coulomb-blockade transport--whereby the Coulomb interaction between electrons can prohibit their transport around a circuit--occurs in systems in which both the tunnel resistance, Rb between neighbouring sites is large (>h/e2) and the charging energy, E(C) (E(C) = e2/2C, where C is the capacitance of the site), of an excess electron on a site is large compared to kT. (Here e is the charge of an electron, k is Boltzmann's constant, and h is Planck's constant.) The nature of the individual sites--metallic, superconducting, semiconducting or quantum dot--is to first order irrelevant for this phenomenon to be observed. Coulomb blockade has also been observed in two-dimensional arrays of normal-metal tunnel junctions, but the relatively large capacitances of these micrometre-sized metal islands results in a small charging energy, and so the effect can be seen only at extremely low temperatures. Here we demonstrate that organic thin-film transistors based on highly ordered molecular materials can, to first order, also be considered as an array of sites separated by tunnel resistances. And as a result of the sub-nanometre sizes of the sites (the individual molecules), and hence their small capacitances, the charging energy dominates at room temperature. Conductivity measurements as a function of both gate bias and temperature reveal the presence of thermally activated transport, consistent with the conventional model of Coulomb blockade.  相似文献   

11.
The measurement of phase in coherent electron systems--that is, 'mesoscopic' systems such as quantum dots--can yield information about fundamental transport properties that is not readily apparent from conductance measurements. Phase measurements on relatively large quantum dots recently revealed that the phase evolution for electrons traversing the dots exhibits a 'universal' behaviour, independent of dot size, shape, and electron occupancy. Specifically, for quantum dots in the Coulomb blockade regime, the transmission phase increases monotonically by pi throughout each conductance peak; in the conductance valleys, the phase returns sharply to its starting value. The expected mesoscopic features in the phase evolution--related to the dot's shape, spin degeneracy or to exchange effects--have not been observed, and there is at present no satisfactory explanation for the observed universality in phase behaviour. Here we report the results of phase measurements on a series of small quantum dots, having occupancies of between only 1-20 electrons, where the phase behaviour for electron transmission should in principle be easier to interpret. In contrast to the universal behaviour observed thus far only in the larger dots, we see clear mesoscopic features in the phase measurements when the dot occupancy is less than approximately 10 electrons. As the occupancy increases, the manner of phase evolution changes and universal behaviour is recovered for some 14 electrons or more. The identification of a transition from the expected mesoscopic behaviour to universal phase evolution should help to direct and constrain theoretical models for the latter.  相似文献   

12.
采用相干量子输运理论和传递矩阵方法研究了具有不同自旋指向的极化电子渡越铁磁/半导体/铁磁隧道结的隧穿几率和隧穿磁电阻。研究表明隧穿几率和隧穿磁电阻随半导体长度的改变发生周期性变化、随Rashba自旋轨道耦合强度的改变发生准周期变化,并且在两铁磁电极中磁矩取向平行时,选择适当的半导体的长度和Rashba自旋轨道耦合强度可以得到较大的隧穿磁电阻。  相似文献   

13.
Kondo resonance in a single-molecule transistor   总被引:4,自引:0,他引:4  
Liang W  Shores MP  Bockrath M  Long JR  Park H 《Nature》2002,417(6890):725-729
When an individual molecule, nanocrystal, nanotube or lithographically defined quantum dot is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena, including the Kondo resonance. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.  相似文献   

14.
Bylander J  Duty T  Delsing P 《Nature》2005,434(7031):361-364
The fact that electrical current is carried by individual charges has been known for over 100 years, yet this discreteness has not been directly observed so far. Almost all current measurements involve measuring the voltage drop across a resistor, using Ohm's law, in which the discrete nature of charge does not come into play. However, by sending a direct current through a microelectronic circuit with a chain of islands connected by small tunnel junctions, the individual electrons can be observed one by one. The quantum mechanical tunnelling of single charges in this one-dimensional array is time correlated, and consequently the detected signal has the average frequency f = I/e, where I is the current and e is the electron charge. Here we report a direct observation of these time-correlated single-electron tunnelling oscillations, and show electron counting in the range 5 fA-1 pA. This represents a fundamentally new way to measure extremely small currents, without offset or drift. Moreover, our current measurement, which is based on electron counting, is self-calibrated, as the measured frequency is related to the current only by a natural constant.  相似文献   

15.
Electrons in a metal are indistinguishable particles that interact strongly with other electrons and their environment. Isolating and detecting a single flying electron after propagation, in a similar manner to quantum optics experiments with single photons, is therefore a challenging task. So far only a few experiments have been performed in a high-mobility two-dimensional electron gas in which the electron propagates almost ballistically. In these previous works, flying electrons were detected by means of the current generated by an ensemble of electrons, and electron correlations were encrypted in the current noise. Here we demonstrate the experimental realization of high-efficiency single-electron source and detector for a single electron propagating isolated from the other electrons through a one-dimensional channel. The moving potential is excited by a surface acoustic wave, which carries the single electron along the one-dimensional channel at a speed of 3 μm ns(-1). When this quantum channel is placed between two quantum dots several micrometres apart, a single electron can be transported from one quantum dot to the other with quantum efficiencies of emission and detection of 96% and 92%, respectively. Furthermore, the transfer of the electron can be triggered on a timescale shorter than the coherence time T(2)* of GaAs spin qubits. Our work opens new avenues with which to study the teleportation of a single electron spin and the distant interaction between spatially separated qubits in a condensed-matter system.  相似文献   

16.
Fölling S  Trotzky S  Cheinet P  Feld M  Saers R  Widera A  Müller T  Bloch I 《Nature》2007,448(7157):1029-1032
Tunnelling of material particles through a classically impenetrable barrier constitutes one of the hallmark effects of quantum physics. When interactions between the particles compete with their mobility through a tunnel junction, intriguing dynamical behaviour can arise because the particles do not tunnel independently. In single-electron or Bloch transistors, for example, the tunnelling of an electron or Cooper pair can be enabled or suppressed by the presence of a second charge carrier due to Coulomb blockade. Here we report direct, time-resolved observations of the correlated tunnelling of two interacting ultracold atoms through a barrier in a double-well potential. For the regime in which the interactions between the atoms are weak and tunnel coupling dominates, individual atoms can tunnel independently, similar to the case of a normal Josephson junction. However, when strong repulsive interactions are present, two atoms located on one side of the barrier cannot separate, but are observed to tunnel together as a pair in a second-order co-tunnelling process. By recording both the atom position and phase coherence over time, we fully characterize the tunnelling process for a single atom as well as the correlated dynamics of a pair of atoms for weak and strong interactions. In addition, we identify a conditional tunnelling regime in which a single atom can only tunnel in the presence of a second particle, acting as a single atom switch. Such second-order tunnelling events, which are the dominating dynamical effect in the strongly interacting regime, have not been previously observed with ultracold atoms. Similar second-order processes form the basis of superexchange interactions between atoms on neighbouring lattice sites of a periodic potential, a central component of proposals for realizing quantum magnetism.  相似文献   

17.
以耦合到超导电极、铁磁金属电极及正常金属电极的三端子量子点混杂系统为研究对象,系统研究了自旋极化电子的Andreev反射过程对热电流的影响.研究发现,Andreev反射过程及正常的隧穿过程两种机制的竞争不仅导致热电荷流大小和方向的改变,而且导致热自旋流大小和方向的改变.实验上可通过调控门电压及超导体与量子点耦合强度来实现.  相似文献   

18.
采用非平衡态格林函数方法,研究了一个三电极的平行双量子点结构中由局域Rashba型自旋轨道耦合诱导的自旋极化的电子输运.结果发现,当电子从"源"电极经量子点区到两个"漏"电极时,它能根据自身的自旋态选择终端,即自旋极化和自旋分离可在这一结构同时实现.同时发现,量子点内的库仑相互作用对该体系的自旋输运性质有重要影响,其中有额外电极与之耦合的量子点中的库仑相互作用的强度对自旋输运起主要调节作用.  相似文献   

19.
Because of inversion symmetry and particle exchange, all constituents of homonuclear diatomic molecules are in a quantum mechanically non-local coherent state; this includes the nuclei and deep-lying core electrons. Hence, the molecular photoemission can be regarded as a natural double-slit experiment: coherent electron emission originates from two identical sites, and should give rise to characteristic interference patterns. However, the quantum coherence is obscured if the two possible symmetry states of the electronic wavefunction ('gerade' and 'ungerade') are degenerate; the sum of the two exactly resembles the distinguishable, incoherent emission from two localized core sites. Here we observe the coherence of core electrons in N(2) through a direct measurement of the interference exhibited in their emission. We also explore the gradual transition to a symmetry-broken system of localized electrons by comparing different isotope-substituted species--a phenomenon analogous to the acquisition of partial 'which-way' information in macroscopic double-slit experiments.  相似文献   

20.
Englund D  Faraon A  Fushman I  Stoltz N  Petroff P  Vucković J 《Nature》2007,450(7171):857-861
Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号