首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
将DNA单链构象多态(SSCP)检测的原理,应用于“显微切割的人染色体17q11—12探针池”批量分离单拷贝片段,取得了很好效果。从筛选出的74个次级单拷贝中有效地鉴定出37个非同源的单拷贝片段。这比传统的仅限于长度比较而确认的非同源单拷贝片段(12个)多出25个.其中部分已经DNA测序证实。结果提示:采用SSCP技术区分相似分子量单拷贝片段的同源性,可显著地提高从“显微切割探针池”分离和克隆非同源单拷贝片段的效率。本文还将一部分单拷贝片段作为探讨,与人基因组DNA的限制性片段作Southern印迹杂交,结果均只显示单一杂交带,说明单拷贝DNA片段的结论是可靠的。  相似文献   

2.
The Duchenne muscular dystrophy (DMD) locus has been localized to the short arm of the human X chromosome (Xp21) by detection of structural abnormalities and by genetic linkage studies. A library highly enriched for human DNA from Xp21 was constructed using DNA isolated from a male patient who had a visible deletion and three X-linked disorders (DMD, retinitis pigmentosa and chronic granulomatous disease). Seven cloned DNA probes from this library and the probe 754 (refs 5, 8) are used in the present study to screen for deletions in the DNA isolated from 57 unrelated males with DMD. Five of these DMD males are shown to exhibit deletions for one of the cloned DNA segments and at least 38 kb of surrounding DNA. In addition, two subclones from the same region detect four restriction fragment length polymorphisms which exhibit no obligate recombination with DMD in 34 meiotic events. These new DNA segments will complement the existing Xp21 probes for use in carrier detection and prenatal diagnosis of DMD. Elucidation of the end points of the five deletions will help delineate the extent of the DMD locus and ultimately lead to an understanding of the specific sequences involved in DMD.  相似文献   

3.
4.
To investigate the characters of repetitive DNA sequence in the sex chromosomes of the spiny eel (Mastacembelus aculeatus), the X chromosomal library was screened and a family of repetitive sequence, consisting of Ma 1-Ma 6, was isolated. The fluorescence in situ hybridization (FISH) result confirmed that Ma 1 - Ma 5 dispersed over sex chromosomes and all autosomes, whereas, Ma 6 is sex chromosome-specific and distributed only on the C-band positive regions of X chromosome, and Ma 6 maybe the main components of the heterochromatic regions of X chromosome. This study provides additional information about the evolution of sex chromosomes in lower vertebrates such as fish.   相似文献   

5.
H J Lüdecke  G Senger  U Claussen  B Horsthemke 《Nature》1989,338(6213):348-350
The molecular analysis of many genetic diseases requires the isolation of probes for defined human chromosome regions. Existing techniques such as the screening of chromosome-specific libraries, subtractive DNA cloning and chromosome jumping are either tedious or not generally applicable. Microdissection and microcloning has successfully been applied to various chromosome regions in Drosophila and mouse, but conventional microtechniques are too coarse and inefficient for analysis of the human genome. Because microdissection has previously been used on unbanded chromosomes only, cell lines in which the chromosome of interest could be identified without banding had to be used. At least one hundred chromosomes were needed for dissection and lambda vectors used to achieve maximum cloning efficiency. Recombinant phage clones are, however, more difficult to characterize than plasmid clones. Here we describe the dissection of the Langer-Giedion syndrome region on chromosome 8 from GTG-banded metaphase chromosomes (G-banding with trypsin-Giemsa) and the universal enzymatic amplification of the dissected DNA. Eighty per cent of clones from this library (total yield 20,000) identify single-copy DNA sequences. Fifty per cent of clones detect deletions in two patients with Langer-Giedion syndrome. Although the other clones have not yet been mapped, this result demonstrates that thousands of region-specific probes can be isolated within ten days.  相似文献   

6.
A B Rabson  P E Steele  C F Garon  M A Martin 《Nature》1983,306(5943):604-607
Mammalian cells contain multiple copies of endogenous type C retroviral DNA sequences. Among these sequences are complete, potentially infectious proviruses, proviral DNA that is expressed only in the form of viral antigens, retroviral segments that may contribute portions of envelope (env) genes during the generation of recombinant polytropic viruses, and many subgenomic viral DNA segments that may not be expressed at all. We have previously reported the identification and molecular cloning of type C retroviral sequences from human DNA and have shown that the partial nucleotide and deduced amino acid sequences of one of the clones obtained (lambda 51) are homologous to Moloney MuLV (MoMuLV) in the gag and pol regions. The lambda 51 clone as well as several others isolated from a human DNA library contained approximately 4.3 kilobases (kb) of retroviral sequences, were deleted in the env region, and were flanked by tandem repeats unlike the long terminal repeats (LTRs) typically found in proviral DNAs (P.E.S., in preparation). We describe here the characterization of a full-length human retroviral clone (lambda 4-1) containing LTR elements as well as a putative env region. DNA-RNA hybridization experiments reveal that human cells contain species of poly(A)+ RNA that anneal to segments of the full-length retroviral DNA clone.  相似文献   

7.
Human p53 gene localized to short arm of chromosome 17   总被引:7,自引:0,他引:7  
The p53 gene codes for a nuclear protein that has an important role in normal cellular replication. The concentration of p53 protein is frequently elevated in transformed cells. Transfection studies show that the p53 gene, in collaboration with the activated ras oncogene, can transform cells. Chromosomal localization may provide a better understanding of the relationship of p53 to other human cellular genes and of its possible role in malignancies associated with specific chromosomal rearrangements. A recent study mapped the human p53 gene to the long arm of chromosome 17 (17q21-q22) using in situ chromosomal hybridization. Here, by Southern filter hybridization of DNAs from human-rodent hybrids, we have localized the p53 gene to the short arm of human chromosome 17.  相似文献   

8.
K E Davies  B D Young  R G Elles  M E Hill  R Williamson 《Nature》1981,293(5831):374-376
A library of 50,000 recombinants representative of the human X chromosome has been constructed. Human X chromosomes were physically separated using a fluorescence-activated cell sorter. The DNA was purified from the chromosomes, digested to completion with the restriction enzyme EcoRI and cloned into the phage lambda gtWES.lambda B. The X-derived nature of the recombinants was confirmed by hybridization to rodent/human cell line DNA containing only the human X chromosome. Such libraries will be particularly useful for the investigation of genetic diseases such as Duchenne muscular dystrophy, where the basic defect has not been elucidated, and of neoplasia, where several specific chromosomal anomalies, particularly for the leukaemias, have been identified.  相似文献   

9.
10.
A Poustka  T M Pohl  D P Barlow  A M Frischauf  H Lehrach 《Nature》1987,325(6102):353-355
A basic difficulty in the molecular analysis of genes identified by mutations in the mammalian genome is the need to cover genetic distances corresponding to several hundred kilobases or more by molecular techniques like chromosome walking. In chromosome jumping, this limitation is overcome by the deletion of all but the extreme ends of large DNA molecules before cloning. We describe here the construction and characterization of a NotI 'jumping library' from human DNA. To characterize this library, random clones were analysed by restriction mapping. Clones carrying unique end fragments were characterized further by hybridization to Southern blots of NotI-cleaved human DNA separated on pulsed field gradient (PFG) gels. As a first step in a directional walk, the library was screened with a clone containing a NotI site cleaved in genomic DNA ('NotI linking clone') localized to the distal third of the short arm of human chromosome 4 (A.-M.F. & T.P., unpublished data). Starting and end points of two identified clones were positioned within a restriction map covering 850 kilobases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号