首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2C时在3.0V~4.3V电压范围的首次放电比容量为126.9mAh/g,30次循环后的比容量为126.0mAh/g,容量保持率达到99.29%.  相似文献   

2.
采用一步碳热还原法,以一种有机碳源为碳前驱体合成了单斜晶系的Li3V2(PO4)3/C复合材料. 主要研究了合成温度对材料性能的影响. 结果表明: 750~850 ℃时可以获得纯相的正极材料Li3V2(PO4)3;同时首次放电容量达到161 mAh/g;经过50次循环后,750 ℃下的容量保持率仍为83%,表明材料具有良好的循环稳定性能.  相似文献   

3.
Li3V2(PO4)3是当今较新型的锂离子电池正极材料之一,其显著优点之一是在大容量动力锂离子电池研发方面拥有巨大的应用潜力.研究表明,Li3V2(PO4)3跟LiCoO2的放电平台和能量密度相同,但是其安全性以及热稳定性要远远优于LiCoO2,同样强于LiMn2O4和LiFePO4.较之LiFePO4,单斜晶系的Li3V2(PO4)3化合物拥有更高的Li+离子扩散系数以及更高的放电电压(3.6V、4.1V和4.6V)和能量密度(用碳包覆后为2 330 mWh/cm3).因此,对近十多年来单斜晶Li3V2(PO4)3的主要合成工艺,碳包覆及掺杂改性等方面的研究进行综述,并对单斜晶Li3V2(PO4)3正极材料的晶体结构、充放电机理、性能特点分别进行了介绍.  相似文献   

4.
采用蔗糖辅助燃烧法制备了富锂型锂离子电池正极材料Li1.1Mn2O4, XRD表明合成的Li1.1Mn2O4样品具有完整的尖晶石结构. SEM显示样品是由纳米粒子组成. 0.5 C 初始放电比容量为115 mAh/g, 10 C放电比容量可达109 mAh/g. 10 C倍率下循环200次容量保持率为90%. 实验结果表明该材料倍率和循环性能均优良.  相似文献   

5.
采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化学性能。研究结果表明:Li5La3Ta2O12包覆的Li Mn2O4材料与未包覆的材料相比,其电化学性能得到明显改善,经过150次循环后包覆材料的放电比容量保持率为92%,在高倍率10C(C为倍率)下包覆材料放电比容量为61.2 m A·h/g,而未包覆材料放电比容量仅为40.7 m A·h/g;包覆Li5La3Ta2O12后,Li Mn2O4的阻抗明显减小,大幅度提高了其循环性能和倍率性能。  相似文献   

6.
以过渡金属乙酸盐和氢氧化锂为原料,采用共沉淀方法制备了锂离子电池富锂正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2并对该材料进行表面包碳.X射线衍射技术(XRD)、扫描电子显微技术(SEM)实验数据表明,该材料具有层状α-NaFeO2 结构.包碳后材料结构没有变化,表面覆盖上一层纳米级别的颗粒.电化学性能测试结果表明该材料包碳后在0.1 C (1 C=180 mA/g),2.0 ~ 4.8 V电位范围内首次放电比容量高达259.0 mAh/g.包碳后首次放电比容量,倍率性能,循环性能均得到提高.采用电化学阻抗谱(EIS)研究包碳前后该材料的传荷阻抗,结果显示碳包覆材料的传荷阻抗明显减小,电子电导率得到提高,从而提高电化学性能.  相似文献   

7.
采用固相烧结法,合成了一系列橄榄石型LiFe1-xNixPO4/C (x = 0, 0.02, 0.04, 0.06)复合正极材料. 通过XRD、充放电和TEM等现代手段,研究了样品的物相结构、电化学性能等. 充放电测试表明,LiFe0.98Ni0.02PO4/C以0.1 C倍率电流放电时,首次放电容量分别为142.0 mAh/g. 样品还表现出很好的倍率性能,当以2 C的倍率放电时,放电容量达到了121.3 mAh/g. 结果表明少量Ni离子掺杂可改善LiFePO4的电化学性能. 透射电镜表明LiFe0.98Ni0.02PO4/C样品表面包覆了一层大约2.8 nm厚的碳层.  相似文献   

8.
锂离子电池正极材料磷酸钒锂的掺杂   总被引:1,自引:0,他引:1  
为了降低磷酸钒锂(Li3V2(PO4)3)材料成本并提高材料中活性元素V的利用率,该文采用溶胶凝胶/碳热还原法合成了球形锂离子电池正极材料Li3V2(PO4)3及其掺杂不同金属离子(Al3+、Cr3+、Y3+、Ti4+)的衍生物。电化学测试结果表明,经摩尔分数x为5%的金属离子掺杂修饰后的Li3V2(PO4)3材料的首次充放电容量及循环性能均优于经x=10%的金属离子掺杂的材料。其中Al3+和Ti4+的掺杂更加有效,在3.0~4.8 V、0.5 mA下、摩尔分数为5%的Al3+和Ti4+掺杂后的Li3V2(PO4)3样品中首次充电容量分别为178 mAh.g-1和174.9mAh.g-1。80次循环后放电容量均保持在123 mAh.g-1左右。  相似文献   

9.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

10.
通过高温固相法,采用不同的碳源合成了LiFePO4/C复合材料,对以LiFePO4/C为正极的电池进行循环性能测试,通过对首次放电容量曲线和不同倍率条件下容量衰减曲线的分析,深入研究了葡萄糖和乙炔黑的不同碳包覆效果. 结果表明,单一葡萄糖碳源制备的LiFePO4/C材料首次放电容量为125.07 mAh/g,以0.5 C倍率循环20次后容量保持率为91.27%.  相似文献   

11.
设G为有限群,o1(G)表示G中最高阶元素的阶.用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题.本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了:设G为有限群,M为单K3-群L3(3)和U3(3),则G≌M当且仅当|G|=|M|,且o1(G) =o1 (M).  相似文献   

12.
不定方程x^3+y^3+z^3=3的整数解问题是一个较古老且未得到完全解决的问题,在已找到的整数解中可发现,均有两个未知数的解相等.对于在两个未知数相等的情况下有无整数解进行一定的研究和推进,并且证明了x^3+y^3+z^3=3的解存在的形式.  相似文献   

13.
14.
探讨了以3-羟基-3-甲基丁炔为原料合成3-氯-3-甲基丁炔的工艺,并考察了反应条件对3-氯-3-甲基丁炔收率的影响.通过正交实验确定了最佳工艺条件:3-羟基-3-甲基丁炔23.5 g,浓盐酸28 mL,浓硫酸18 mL,反应温度30 ℃,催化剂ZnCl2 2 g,该合成工艺收率可达83%以上.  相似文献   

15.
采用光谱测量技术分析了CH3NH3PbI3薄膜的光致发光增强效应及其对载流子复合动力学的影响.实验结果表明,增加光浴功率密度有助于提高薄膜的光致发光增强速率,O2环境有利于薄膜的光致发光增强.CH3NH3PbI3薄膜光浴处理引入的光致发光增强效应源于薄膜内缺陷态浓度降低.同时利用微波吸收介电谱技术,表征了CH3NH3PbI3薄膜光浴前后,自由载流子和浅能级束缚载流子的复合动力学.发现光浴后,薄膜的自由载流子和浅能级束缚载流子浓度明显提高.  相似文献   

16.
3p^3阶群之构造   总被引:2,自引:0,他引:2  
在有限群理论中,确定n阶群的构造是一个分类问题。本文试图确定3p~3(p是奇素数,且p≠3)阶群的构造,即证明下面的定理: 令p是一个素数,则3p~3(p≠3)阶群有 (1)7种类型,当p≠1(mod3)。 (2)19种类型,当p=1(mod3)。  相似文献   

17.
3   总被引:22,自引:0,他引:22  
  相似文献   

18.
3   总被引:3,自引:0,他引:3  
根据唯象自旋哈密顿和微观相互作用之间的近似等效性,本文导出了3d  相似文献   

19.
主要讨论了方程nxyzzyx=- 3333的性质,并给出了几种特殊形式的解。  相似文献   

20.
设G为有限群,o1(G)表示G中最高阶元素的阶。用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题。本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了: 设G为有限群, M 为单K3-群L3(3)和U3(3),则GM当且仅当|G|=|M|,且o1(G)=o1(M)。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号