共查询到17条相似文献,搜索用时 62 毫秒
1.
针对非线性说话人跟踪系统,提出一种基于自适应有限差分粒子滤波算法的麦克风阵列声源定位与跟踪方法.该方法在改进的粒子滤波框架内,采用适应性较强的布朗运动模型,通过计算麦克风阵列波束形成器的输出能量来构建似然函数,有效降低观测误差的不确定性对说话人位置估计的影响,一定程度上提升了说话人跟踪系统的精度.实验结果表明,该方法在基于麦克风阵列的说话人跟踪系统中具有较高的精确性. 相似文献
2.
利用分层采样方法,融合波达方向和时间延迟两种信息,实现了对说话人的定位与跟踪.分层采样方法考虑波达方向和时间延迟这两种不同观测信息对说话人位置估计精度的差异,将基于波达方向滤波得到的状态后验概率密度函数作为基于时间延迟滤波的重要性采样函数,增强了重要性概率密度函数与后验概率密度函数的相似程度,从而改善了重要性概率密度函数的质量,减小了采样粒子权值的方差,提高了对说话人位置的估计精度.仿真实验验证了该方法的有效性. 相似文献
3.
针对分布式麦克风网络中的说话人跟踪问题,提出一种自适应交互式多模型粒子滤波算法,以实现复杂环境下对说话人的分布式跟踪.首先,对分布式麦克风网络中的说话人跟踪问题建立状态空间模型,并利用贝叶斯滤波理论求解该问题.然后,将交互式多模型与粒子滤波相结合,提出一种双粒子滤波方法对运动模型的转换概率进行自适应估计,以更好地对多种... 相似文献
4.
针对RoboCup标准组仿人足球机器人NAO的特点,在研究传统粒子滤波跟踪算法基础上,提出基于颜色特征和改进的粒子滤波相结合的机器人跟踪算法。改进的粒子滤波算法在传统采样重要性重采样(SIR)算法重采样过程中有选择地增加一组随机粒子,解决了传统采样重要性重采样(SIR)算法因被跟踪运动目标运动不规则而出现跟丢的问题。实验结果表明,该算法增强了基于SIR的粒子滤波跟踪算法的适应性和有效性。 相似文献
5.
6.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。 相似文献
7.
为保障机车行驶安全,由车载高清摄像机获取路况视频并识别信号灯及其颜色状态时,视频中信号灯目标尺度变化大、机车行驶抖动、复杂光环境及光圈自适应调节滞后等因素使得信号灯鲁棒跟踪与识别具有不小难度.针对信号灯跟踪问题,本文提出一种带检测矫正的粒子滤波跟踪方法,该方法在粒子滤波框架下对信号灯进行跟踪,并通过一个在线更新的模板对滤波结果进行检测矫正,以提高跟踪结果的准确性.为提高跟踪算法对光照以及目标尺度变化的适应能力,本文在对信号灯建模时融合了HSV颜色特征与局部二元模式特征.实验结果表明,该方法在较复杂的场景下能够很好地对信号灯进行实时鲁棒的跟踪,并且跟踪结果具有较高的准确性. 相似文献
8.
目标跟踪技术一直是计算机视觉的核心内容。本文结合粒子滤波与Mean-shift跟踪方法,提出了一种新的自适应目标跟踪方法,通过利用粒子滤波获取目标的初始位置,进而采用Mean-shift跟踪方法,实现目标跟踪的准确定位,同时,通过抑制背景特征分布,更新目标特征分布,从而在跟踪过程中自适应调整目标的模板表示。实验结果表明了本文提出方法的有效性。 相似文献
9.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性. 相似文献
10.
《河南师范大学学报(自然科学版)》2015,(3):148-154
为提高粒子滤波在目标跟踪中的性能,将萤火虫算法(Firefly Algorithm,FA)的优化思想引入粒子滤波,并用自适应差分进化(Self-adaptive Differential Evolution,SaDE)算法代替粒子滤波的重采样,提出一种改进的粒子滤波跟踪算法,并采用新的跟踪特征HSV-iLBP进行跟踪.该算法将FA用于粒子滤波的重要性采样,通过计算迭代来抽取更加有效的粒子,并将粒子滤波的重采样过程看作求解目标函数的最值问题,通过自适应差分进化算法的迭代寻找最优粒子,改善粒子的退化和贫化问题.HSV-iLBP模型由于结合了维数低的HSV颜色特征和iLBP纹理特征,从而在提高跟踪鲁棒性的同时,能有效降低计算复杂度.通过仿真实验,验证了改进算法在行人跟踪上具有更好的精度和速度. 相似文献
11.
一种基于粒子滤波的双模态语音提取方法 总被引:1,自引:0,他引:1
说话入的唇动信息有助于加强对语音的感知.根据说话人语音的双模态特性,将振动信息引入语音提取问题,提出了一种基于粒子滤波的贝叶斯融合架构的双模态语音提取方法.该方法融合说话人的语音和唇动信息,根据信息论中的最大互信息准则与盲源分离中的高阶统计量准则.将音视频互信息与语音峭度的乘积作为代价函数,利用粒子滤波估计混合矩阵.解决时变瞬时混合情况下的语音提取问题.仿真结果表明.该方法在低信噪比情况下仍然能够实现语音信号的有效提取. 相似文献
12.
为降低无线传感器网络中核学习机训练时的数据通信代价和节点计算代价,研究了基于筛选机制的L1正则化核学习机分布式训练方法。提出了一种节点局部训练样本筛选机制,各节点利用筛选出的训练样本,在节点模型对本地训练样本的预测值与邻居节点间局部最优模型对本地训练样本预测值相一致的约束下,利用增广拉格朗日乘子法求解L1正则化核学习机分布式优化问题,利用交替方向乘子法求解节点本地的L1正则化核学习机的稀疏模型;仅依靠相邻节点间传输稀疏模型的协作方式,进一步优化节点局部模型,直至各节点模型收敛。基于此方法,提出了基于筛选机制的L1正则化核最小平方误差学习机的分布式训练算法。仿真实验验证了该算法在模型预测正确率、模型稀疏率、数据传输量和参与模型训练样本量上的有效性和优势。 相似文献
13.
量子遗传优化粒子滤波的WSN目标跟踪算法 总被引:1,自引:0,他引:1
在无线传感器网络(WSN)目标跟踪应用中,传统粒子滤波算法存在多样性退化问题。为提高WSN目标跟踪精度,提出一种基于量子遗传算法优化粒子滤波的WSN目标跟踪方法。量子遗传算法不仅增加粒子多样性,防止粒子退化现象出现,有效缩短了计算时间且改善粒子跟踪能力。测试结果表明,所提出算法很好地减轻了粒子退化对目标跟踪精度影响,提高了WSN目标跟踪精度和跟踪的实时性,跟踪结果令人满意。 相似文献
14.
对粒子滤波理论及其实现方法进行了研究.通过模拟实验验证了其优于卡尔曼跟踪的性能,并结合基于双正交小波的边缘形心提取方法和粒子滤波跟踪方法,构建了其跟踪框架.通过粒子数和系统状态转移方程的恰当选择,实现了云层背景下对背景简单的点目标和存在遮挡和旋转变化情况下的大目标进行跟踪.最后通过实验分析了粒子数目和状态方程的选取对跟踪精度的影响.实验证明,结合鲁棒性的小波检测方法和具有"多峰"描述的粒子滤波算法构造成的跟踪器,在运动目标存在局部遮挡和旋转变化等情况下能够实现稳定的目标跟踪. 相似文献
15.
提出一种改进的车辆检测与跟踪方法。在目标检测阶段,针对传统高斯混合建模算法对环境变化适应能力较差的问题,设计一个环境变化判断因子,据此进行高斯混合模型更新率的自动切换;在车辆跟踪阶段,为提高跟踪精度和跟踪效率,引入卡尔曼滤波并设计了跟踪列表进行单目标和多目标的跟踪。实验表明,该方法对光照突变有较好的适应性,能实现车辆的有效检测与跟踪。 相似文献
16.
视觉跟踪是机器人自主导航、智能监控系统的关键技术.在粒子滤波跟踪算法中,设计粒子滤波器时,粒子大小是固定不变的,而目标与镜头之间是相对运动的,目标图像大小可能超出粒子范围,使得跟踪跟踪目标丢失.为了解决了上述问题本文提出了基于小波变换图像的粒子滤波方法.这里做法是在图像中目标上采集粒子,然后采用小波变换的分解算法和重建算法处理目标附近区域图像,再将采集到的粒子分成三部分,分别在原图和两种小波图像中传播.这样可以增强粒子滤波的鲁棒性,提高跟踪精度. 相似文献
17.
针对说话人语音特征空间边界存在模糊性的特点,构建了一种量子神经网络识别分类器,用于说话人识别,以改善存在交叉数据的语音特征参数的分类效果。提出了一种基于人工免疫算法的量子间隔训练方法,以改善传统量子神经网络训练算法的不足。以TIMIT语音库为测试语音,与传统BP网络和基于常规梯度下降量子间隔训练算法的量子神经网络做对比实验。实验证明,算法能有效提高说话人识别系统的识别率,同时与高斯混合模型相比,具有更好的抗噪声性能。 相似文献