共查询到19条相似文献,搜索用时 46 毫秒
1.
针对循环神经网络(recurrent neural networks,RNN)网络结构存在的长期依赖问题,门控循环单元(gated recurrent unit,GRU)神经网络作为RNN的一种变体被提出。在继承RNN对时间序列优秀记忆能力的前提下,GRU克服了时间序列的长期依赖问题。本文针对金融时间序列数据存在的依赖问题,将GRU扩展应用到金融时间序列预测,提出了基于差分运算与GRU神经网络相结合的金融时间序列预测模型。该模型能够处理金融时间序列数据的复杂特征,如非线性、非平稳性和序列相关性。通过对标准普尔(SP)500股票指数的调整后收盘价进行预测,实验结果表明,所提出的方案能够提高GRU神经网络的泛化能力和预测精度,并且与传统预测模型相比该模型对金融时间序列的预测拥有更好的预测效果和相对较低的计算开销。 相似文献
2.
3.
为提高用户公交出行积极性、方便管理部门合理调度公交班次,利用大数据分析公交浮动车辆历史GPS数据,考虑不同线路、公交站点地理位置、不同驾驶员、气象情况、时间分布等多因素的影响,建立了一种基于门控循环单元(gated recurrent unit, GRU)神经网络的公交到站时间预测模型。该模型结合5 000多万条原始数据,借助分布式Hadoop集群中的Spark弹性分布式数据集进行数据清理,并运用站点匹配算法进行源数据匹配、Lasso算法优化特征选项及去除干扰。实验仿真结果表明:改进的GRU模型R-square拟合度达到94.547%,并且算法效率较传统长短期记忆(long short-term memory,LSTM)神经网络提高了近14%,为进一步提高公交到站时间的预测精度与效率提供了参考。 相似文献
4.
多变量时间序列各变量间依赖性较强,数据变化趋势不明显,预测难度高.传统研究采用带门控机制的循环神经网络及变体进行预测,但序列间存在相互依赖关系,突变数据段建模预测不精确.基于信息熵,本文提出一种新的改进门控权重单元,利用信息熵技术量化数据序列的变化程度,动态调整权重矩阵刻画数据的变化趋势.基于4个公开数据集分别进行实验,实验结果表明新模型比传统循环神经网络模型具有更好的预测性能. 相似文献
5.
5-甲基胞嘧啶(5-methylcytosine, m5C)是一种重要的转录后修饰,大量证据表明,m5C在许多生物学过程中起着至关重要的作用.准确鉴定m5C位点有助于更好地了解其生物学功能.为此提出了一个名为pm5C-BGRU的模型,该模型通过拼接独热编码(One-hot encoding)和核苷酸化学性质(nucleotide chemical property, NCP)进而对RNA序列进行特征提取,并基于双向门控循环单元(Bidirectional Gated Recurrent Unit, BiGRU)来识别m5C位点.将该方法在人类、小鼠和拟南芥三个物种的m5C数据集上进行建模和测试,并对照已有的预测模型进行评估.结果表明,pm5C-BGRU在交叉验证和独立数据集测试中均取得优异效果,该模型有望成为鉴定m5C位点的有力工具. 相似文献
6.
时间序列数据分析可用于识别长期趋势并进行正确的预测,与人工神经网络(artificial neural network, ANN)相比,门控循环单元(gated recurrent unit, GRU)可以处理时间序列信号,在自然语言处理、语音识别、机器翻译等方面有着广泛的应用。然而,由于参数和模型的复杂性,GRU模型在硬件实现中遇到了瓶颈。文章构建一个基于忆阻器的GRU硬件电路,具有完整的GRU功能,而且输入/输出参数更少。仿真结果表明,电路的平均误差为0.007 5,能够有效地实现GRU网络的功能。将设计的GRU电路应用在搭建的序列预测模型中,可以预测股票价格变化趋势,且其预测的R2分数达到0.923 4。因此基于忆阻器的GRU硬件电路的设计在机器学习和人工智能方面具有一定的应用潜力。 相似文献
7.
吸收塔内浆液的PH值是影响燃煤电厂湿法脱硫系统效率的重要参数。燃煤电厂的湿法脱硫系统具有大滞后、非线性、强耦合等特征,因而其吸收塔浆液的PH值很难实现精准控制。本文利用门控循环单元(gated recurrent unit, GRU)神经网络在处理时间序列数据的优越性,对吸收塔内的浆液PH值进行预测建模,通过将燃煤电厂采集的影响浆液PH值的变量数据作为模型的输入,对模型进行训练处理,获得吸收塔内浆液PH值的预测模型。将预测模型应用于辽宁省华能营口电厂600MW机组湿法脱硫智能控制系统中吸收塔内浆液PH值的预测。结果表明相比于反向传播(back propagation, BP)神经网络模型、径向基函数(radial basis function, RBF)神经网络、循环神经网络(recurrent neural network, RNN)和长短期记忆(long and short term memory, LSTM)神经网络,该模型精确度更高,实用性更强。 相似文献
8.
9.
10.
为丰富地铁内部换乘客流预测理论,更好地制定地铁运营计划,提出了一种基于时间序列分解方法(STL)与门控循环单元(GRU)的地铁换乘客流预测模型。该模型将预测过程分为3个阶段,第1阶段为原始地铁刷卡数据预处理,采用基于图的深度优先搜索算法识别乘客的出行路径,构建换乘客流时间序列;第2阶段运用STL时间序列分解算法将换乘客流时间序列转化为趋势量、周期量以及余量,并利用3σ原则对余量进行异常值的剔除与填充;第3阶段基于深度学习库Keras,完成GRU模型的搭建、训练及预测。以北京地铁西直门站的换乘客流数据为研究对象,对模型的有效性进行了验证,结果表明:与长短时记忆神经网络(LSTM)、门控循环单元、STL时间序列分解方法与长短时记忆神经网络组合模型(STL-LSTM)相比,STL-GRU组合预测模型可提升工作日(不含周五)、周五、休息日的换乘客流预测精度,预测结果的平均绝对百分比误差至少分别降低了2.3、1.36、6.42个百分点。 相似文献
11.
12.
选取2010-01-01—2010-10-31期间内,美元兑人民币的汇率基准价,以Morlet为母小波基函数,采用紧密结合的的小波神经网络对汇率基准价作非线性逼近,并在此小波神经网络基础上进行改进,并通过Matlab软件对原网络与改进网络的训练过程进行了数值仿真.仿真结果表明,改进网络模型对汇率基准价的预测是可行的,其预测精度更高. 相似文献
13.
《江汉大学学报(自然科学版)》2014,(2):92-96
随着信息化技术在各个学科领域的渗透,高校中越来越多的课程要求学生在计算机实验室完成相关操作,随着上机人次陡增,计算机的损耗也随之增大。为了更好地对实验室进行维护,以湖北大学知行学院计算机系2005年计算机实验室210台计算机的历史故障率为样本,采用JAVA语言,利用BP网络训练模型预测该批计算机的故障率,然后对照历史数据发现一定的误差,再利用增加动量项法对该BP算法进行改进,改进后的样本训练预测结果与历史数据基本保持一致。 相似文献
14.
基于遗传神经网络的汇率价格短期预测 总被引:2,自引:0,他引:2
该文将遗传算法和人工神经网络相结合,建立了遗传神经网络模型,并且应用到汇率价格的短期预测.结果表明,如果对网络以一组汇率数据加以良好的训练,该模型就有较好的预测能力. 相似文献
15.
基于神经网络的交通流的预测 总被引:1,自引:0,他引:1
贾丹 《渤海大学学报(自然科学版)》2002,23(3):27-29
在简要介绍智能系统中交通流的实时检测设备的基础上 ,为满足交通流诱导系统的理论需要 ,建立了实时交通流量神经网络预测模型。该模型为交通流诱导系统提供了预测交通状况的一种很好的方法 相似文献
16.
马亮亮 《北京联合大学学报(自然科学版)》2012,26(3):73-76
目的:在医学卫生领域,疾病发病率受许多因素的影响,很难用结构式因果模型解释,根据神经网络预测是一种行之有效的方法。多层前馈神经网络(BP)应用于疾病发病率的预测时,由于影响它的气象因素,如月平均气温、月平均气压、月平均相对湿度等本身具有很大相关性,且维数较高,BP神经网络的预测精度会下降。方法:针对这一问题,提出了利用因子分析方法对原输入空间进行重构,并根据各主成分的贡献率确定网络结构,有效地解决了预测精度下降的问题。结果:以2003年1月至2009年12月青海海西州地区胃溃疡发病率的资料验证了该方法的有效性。结论:应该充分考虑胃溃疡在各时间段的发病率特征,以便更有重点地进行健康防治工作,有效地降低胃溃疡对人类的危害,保障人类的生活品质。 相似文献
17.
基于神经网络的公路网规模预测 总被引:2,自引:1,他引:2
路网规模研究是公路网规划的重要内容。考虑影响公路网合理规模的多种因素,提出了一种基于BP神经网络的公路网规模预测方法,并建立了模拟路网规模与其影响因素间的非线形关系预测模型。步骤依次为:改进传统的BP算法、合理确定影响因素、建立预测模型、模型的训练与检验、数据预测。预测结果表明,该方法客观、合理,预测精度高,实用性强,具有较强的理论与实际应用价值。 相似文献
18.
基于模糊神经网络的水力机组模型辨识 总被引:5,自引:0,他引:5
根据水力机组可分段线性化的特性,提出了水力机组简易模糊语言模型。在此基础上,将反馈控制思想引入系统辨识,同时结合神经网络的易学习特点给出了基于模糊神经网络的水力机组模型结构及其算法。最后将所建模型运用于灯泡贯流式机组的在线预测。试验结果表明,该模型在线修正工作量小,并能迅速地、较为准确地逼近实际系统的输出,可以作为贯流式机组自适应控制的实时预测模型。 相似文献
19.
线性调频信号在雷达和声纳探测上有着广泛的应用,利用自适应神经网络理论对线性调频信号的预测进行了研究,建立了自适应神经网络预测控制模型.在Matlab里进行了仿真,从图上可以看出,尽管在预测的初始阶段误差较大,但经过一段时间后,误差几乎趋于零.结果表明自适应神经网络能较好地对线性调频信号进行预测. 相似文献