首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
用常微分方程知识来导出自然数方幂和公式fm(x)。构造一系列多项式,使得当x取自然数时,fm(n)=n∑k=1 k^m  相似文献   

2.
§1 引言大家都知道,对常系数n 阶线性微分方程y~((n)) a_1y~((n-1)) … a_(n-1)y′ a_ny=P_m(x)e~(ax)其中a_i(i=1,2…,n)是实常数,P_m(x)是x 的m 次实系数多项式,α为常数的求解问题。可用“代数法”解决。这个思想方法,能否推广到常系数线性微分方程组  相似文献   

3.
本文讨论方程组dy/dx=Ay+Pm(x)e~(αx)(1)的矩阵解法,其中A为n阶常系数矩阵,Pm(x)为m次矩阵多项式,α为常数.通常书中所给出的求这类方程特解的待定系数法只能在具体方程给出后由手工计算求解,无法在计算机上实现.关于齐次方程组dy/dx=Ay(2)的基解的一般递推公式已有人给出.本文用矩阵导出求(1)的特解的一组递推公式,与[2]中公式相结合形成了求(1)的通解的完整算法。这一算法易于编制程序,完全实现了用计算机解方程组(1)的目的.  相似文献   

4.
关于Legendre多项式零点为节点的Hermite.Fejer插值算子,文[1]指出,对于f(x)∈C[-1,1],在(-1,1)的任意内闭区间上,H—F算子一致收敛于f(x)。由于Legendre多项式零点不像Tchebyshev多项式零点那样能用显式表出,因此,对其逼近阶的估计稍为困难.崔明根在[2]中给出的逼近阶估计为O(1)1/(1-x~2)ω(f,1/(n~(1/2)))本文给出进一步估计,得到逼近阶为O(1)1/(1-x~2)ω(f,(lnn)/n),这里ω(f,δ)的为函数f(x)连续模。记1>x_1~(n)>x_2~(n)>…>x_2~(n)>-1为n阶Legendre多项式L_n(x)的n个零点,{C_k~(n)}_k~n=1为[-1,1]上Legendre-Gauss数值积分系数,则有  相似文献   

5.
二阶常系数非齐次线性微分方程Ry″+Py′+Qy=e~(λx)Pm(x)(其中R、P、Q为实常数,λ为复常数,Pm(x)是关于x的m次多项式)通常都用比较系数法求其特解。但是这种方法当m≥2时就显得繁琐,求解速度缓慢,而且这种方法难于在电子计算机上实现。本文通过有限次的使用向量函数的线性变换.给出Ry″+Py′+Qy=e~(λx)·Pm(x)的特解的一种简单、快速的公式算法,利用框图描绘出计算过程,并对这公式算法编制程序,运用电子计算机去求方程Ry″+Py′+Qy=e~(λx)·Pm(x)的特解,将由手算特解变为电算求解。  相似文献   

6.
本文给出由就范正交系 { φn(x) } ∞n =1 Lp(E)构成的正交级数Σ∞n =1anφn(x) ,其系数an 收敛于零的充分条件及由此得到在L2 ([0 ,1])上的推论。本文也给出当p∈ (0 ,2 )时结论不成立的反例。  相似文献   

7.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

8.
二阶常系数非齐次线性方程 y″ Py′ qy=e~(αx)〔P_1(x)cosβx P_2(x)sinβx〕 (1)的特解 y*=x~ke~(αx)〔R_1(x)cosβx R_2(x)sinβx〕 (2)中多项式R_1(x)、R_2(x)的次数,有关微分方程的教材中指出,它等于多项式P_1(x)、P_2(x)中较高次数(设为m),而K是特征多项式F(λ)=λ~2 Pλ q中含重根α iβ的次数(即K=0或K=1)。本文的目的是:说明R_1(x)、R_2(x)不一定都是m次以及在什么条件它们不同时是m次。  相似文献   

9.
关于integral from n=0 to +∞(e~(-x~2)dx)的多种计算方法的概述  相似文献   

10.
Hilbert空间中的full spark框架在框架理论中具有很好的性质—最大鲁棒性.本文所做的一个重要工作是将序列空间中的full spark框架推广到了函数空间中,先后构造出了一元n次多项式空间H_n(x)及m元n次多项式空间H_n(x_1,x_2,…,x_m)空间中的full spark框架,并举出了一些实例.  相似文献   

11.
考虑周期系数高阶线性微分方程f~((n))+∑j=1 n[P_(n-j)(e~z)+Q_(n-j)(e~(-z))]f~((n-j))=R_1(e~z)+R_2(e~(-z)),其中n≥2,P_j(z),Q_j(z)(j=0,1,2,…,n-1),R_1(z)和R_2(z)均是关于z的多项式,且Pj(z),Qj(z)(j=0,1,2,…,n-1)不全为常数.在条件degPjdegP0(j=1,2,…,n-1)下,获得方程的次正规解的表示.  相似文献   

12.
在求解形如y″+py′+qg=f(x).的二阶常系数非齐次线性微分方程的特解时,对于f(x)=P_m(x)e~(λx)(cosωx+sinωx)型及f(x)=P_m(x)e~(λx)。型一般设方程对两种不同类型的f(x)的特解y~*分别为y~*=x~kQ_m(x)e~(λx)(cosωx+sinωx)(1)y~*=x~kQ_m(x)e~(λx)(2)对两种不同类型的f(x),设两种不同形式的特解时,当P_m(x)为高次多项式时,(1)式较(2)式结构复杂,用待定系数法确定Q_m(x)时的计算繁度大。  相似文献   

13.
文中用初等对称多项式来表示特殊对称多项式sk(x1,x2,…,xn)=sum xik from i=1 to n (k=0,1,2,…)方法得到了n元m阶方阵的k次方和sk=sum xik from i=1 to n (k=0,1,2,…)类似的公式,并对其的计算问题进行了研究,得出了一系列结论.  相似文献   

14.
本文应用残数理论建立了n阶常系数线性微分方程及欧拉方程通解的另一种表示形式。n阶非齐次常系数线性微分方程通解的表达式为函数f(z′)·e~x/g(z)与e~(zx)·integral from x~0 to x e~(-zt)F(t)dt/g(z)在极点z_j(j=1,2,…l)的残数之和。其中g(z)是z的n次多项式,在z_j(j=1,2,…l)的值为零,f(z)是任一个解析函数,在z_j(j=1,2,…l)的值不为零。欧拉方程通解有类似结果。  相似文献   

15.
祁兰 《河南科学》2014,32(7):1164-1166
Fibonacci多项式是以递推方式定义:F0(x)=1,F1(x)=x,F n+2(x)=x F n+1(x)+F n(x).利用代数知识,给出Fibonacci多项式通项的行列式形式和矩阵、向量乘积形式的通项公式证明.  相似文献   

16.
对于给定的权函数 dμ(x) ,若存在 n次首 1多项式 P*n (x) (称为 s-正交多项式 )使下列积分F(s,μ) =∫R[Pn(x) ]2 s+ 2 dμ(x)达到极小 ,Pn(x) =xn +an- 1 xn- 1 +… +a1 x +a0 ,则以多项式 P*n (x)的 n个不同零点 x1 >x2 >… >xn- 1 >xn 作为节点的下列求积公式 (称为 Gauss-Turán求积公式 )∫Rf (x) dμ(x) =∑2 sj=0 ∑nk=1Ajkf ( j) (xk) +E2 s,n(f ) .具有代数精确度 2 (s+1 ) n -1 .但我们对 F (s,μ)所知不多 .Milovanovic′在他最近的一篇文章里提出计算 F(s,μ)的值 .本文主要解决了若干权函数下的上述极小值问题  相似文献   

17.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

18.
1、R. W. Leggett[1]证明H—方程(1、1) H(x)=1+x H(x)integral from n=0 to 1(1/(x+t))ψ(t)H(t)dt,ψ≥0当integral from n=0 to 1ψ(t)dt<1/2时,存在两个解的充要条件为integral from n=0 to 1((ψ(t))/(1-s~2))dt>1/2,但其充分性的证明是错误的。本文是对于更一般形式的方程  相似文献   

19.
齐次对称多项式的分解原理与方差平均不等式猜想   总被引:1,自引:0,他引:1  
获得了如下齐次对称多项式的分解原理:设f(x)为m次齐次对称多项式,且m≥2,n≥2,如果当x1=…=xn时,有f(x)≡0,那么存在m-2次齐次多项式pi,j(x)(1≤i相似文献   

20.
本文研究有限奇异Hankel矩阵的相容多项式与最小度.按定义,非零多项式f(z)=■f_jz~j为n阶Hankel矩阵H=(h_(i+j))■的相容多项式,假如■[f]_n=0,这里[f]_n=(f_0,…,f_n)~■与~■=(h_(i+j))~■每个n阶Hankel矩阵H均可由某个有理函数g/f(degg≤degf)生成:H=H_n(g/f),如果有degf=q,但不存在满足degg≤degf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号