首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bitz CM  Fu Q 《Nature》2008,455(7210):E3-4; discussion E4-5
Arctic sea ice and snow on land have retreated polewards at an alarming pace in the past few decades. Such retreat locally amplifies surface warming through a positive feedback, which causes the Arctic surface to warm faster than the rest of the globe. In contrast, ice and snow retreat causes little warming in the atmosphere above when the stable winter atmosphere inhibits vertical heat exchange. We therefore find surprising the recent report by Graversen et al. in which they claim that recent Arctic atmospheric warming extends far deeper into the atmosphere than expected, and can even exceed the surface warming during the polar night. Using a different data set, we show that there is much less warming aloft in winter, consistent with the recent retreat of ice and snow, as well as recent changes in atmospheric heat transport.  相似文献   

2.
Lubin D  Vogelmann AM 《Nature》2006,439(7075):453-456
The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.  相似文献   

3.
According to Milankovitch theory, the lower summer insolation at high latitudes about 115,000 years ago allowed winter snow to persist throughout summer, leading to ice-sheet build-up and glaciation. But attempts to simulate the last glaciation using global atmospheric models have failed to produce this outcome when forced by insolation changes only. These results point towards the importance of feedback effects-for example, through changes in vegetation or the ocean circulation-for the amplification of solar forcing. Here we present a fully coupled ocean-atmosphere model of the last glaciation that produces a build-up of perennial snow cover at known locations of ice sheets during this period. We show that ocean feedbacks lead to a cooling of the high northern latitudes, along with an increase in atmospheric moisture transport from the Equator to the poles. These changes agree with available geological data and, together, they lead to an increased delivery of snow to high northern latitudes. The mechanism we present explains the onset of glaciation-which would be amplified by changes in vegetation-in response to weak orbital forcing.  相似文献   

4.
This paper presents the surface cooling trend observed in spring along East Asia coast after the late 1990s, in contrast to the global warming trend. This surface cooling trend is comprehensible as it agrees well with the cooling of sea surface temperature (SST) in the northwestern Pacific and the weakening of 300 hPa East Asian jet (EAJ) during spring. Moreover, this cooling phenomenon has been shown to be related to the rapid decline of Arctic sea ice cover (SIC) in previous autumns. The Arctic SIC signals in previous autumns can continue in spring and act as enhanced moisture sources that support the increased snow cover in Siberia during spring. The increased Siberian snow cover possibly favors the southward invasion of cold air masses via strong radiative cooling and large-scale descending motion, which may contribute indirectly to the reduction of temperature in East Asia. In addition, three climate models that can reproduce well the East Asian spring surface cooling observed in the past predicted uncertainty in the spring temperature projection in the next decade.  相似文献   

5.
The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.  相似文献   

6.
The hydrologic cycle in deep-time climate problems   总被引:5,自引:0,他引:5  
Pierrehumbert RT 《Nature》2002,419(6903):191-198
Hydrology refers to the whole panoply of effects the water molecule has on climate and on the land surface during its journey there and back again between ocean and atmosphere. On its way, it is cycled through vapour, cloud water, snow, sea ice and glacier ice, as well as acting as a catalyst for silicate-carbonate weathering reactions governing atmospheric carbon dioxide. Because carbon dioxide affects the hydrologic cycle through temperature, climate is a pas des deux between carbon dioxide and water, with important guest appearances by surface ice cover.  相似文献   

7.
 按照归因分析的研究方法和工具,综述了近些年有关人类影响引起全球变暖证据的科学研究成果。利用全球气候模式考虑人类影响,采用指纹法检测和归因证实,发现人类影响几乎肯定是引起近百年特别是近50年全球变暖的主因。地球系统5个圈层(大气、海洋、陆地、冰雪、生物)与全球变暖有关的证据,如热浪增加、寒潮减弱、低层大气变暖、陆地和海洋变暖、受海水热膨胀和冰融化引起全球海平面上升、冰雪和永冻土融化加速、海洋酸度增加、植物生长季延长等,都与人类影响有密切联系。  相似文献   

8.
Reconstructed changes in Arctic sea ice over the past 1,450 years   总被引:1,自引:0,他引:1  
Arctic sea ice extent is now more than two million square kilometres less than it was in the late twentieth century, with important consequences for the climate, the ocean and traditional lifestyles in the Arctic. Although observations show a more or less continuous decline for the past four or five decades, there are few long-term records with which to assess natural sea ice variability. Until now, the question of whether or not current trends are potentially anomalous has therefore remained unanswerable. Here we use a network of high-resolution terrestrial proxies from the circum-Arctic region to reconstruct past extents of summer sea ice, and show that-although extensive uncertainties remain, especially before the sixteenth century-both the duration and magnitude of the current decline in sea ice seem to be unprecedented for the past 1,450 years. Enhanced advection of warm Atlantic water to the Arctic seems to be the main factor driving the decline of sea ice extent on multidecadal timescales, and may result from nonlinear feedbacks between sea ice and the Atlantic meridional overturning circulation. These results reinforce the assertion that sea ice is an active component of Arctic climate variability and that the recent decrease in summer Arctic sea ice is consistent with anthropogenically forced warming.  相似文献   

9.
为分析玛纳斯河流域冰川积雪覆盖的变化特征,应对气候变化条件下区域水资源的变化,以MODIS数据为基础,利用归一化差分积雪指数方法提取了玛纳斯河流域的冰川积雪覆盖面积,研究了该流域1998—2006年的冰川积雪覆盖变化。结果表明:该流域的年际冰川积雪覆盖区域的平均海拔高度在1998—2002年表现为下降过程,在2002—2006年表现为上升过程;1998~2001年冰川积雪面积有一个缓慢增大的过程,而自2001年以后,出现了年均8km^2左右稳步减小的过程;另外,该流域冰川积雪面积与平均温度、降水分别呈显著负相关和正相关关系。这说明气候变暖对玛纳斯河流域山区冰川积雪的消融有明显促进作用。  相似文献   

10.
The relationship between cloud amount and sea surface temperature (SST) over western tropical Pacific cloudy regions during TOGA COARE is investigated based on hourly grid simulation data from a two-dimensional coupled ocean-cloud resolving atmosphere model. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from TOGA COARE for a 50-day period. The cloud amount becomes smaller when the ocean surface gets warmer, which is similar to previous relations obtained from observational analyses. As SST increases, the atmospheric temperature increases whereas the surface sensible heat flux decreases. The atmospheric water vapor is not sensitive to SST whereas the surface evaporation flux decreases as SST increases. These indicate that the oceanic effects do not play an important role in determining atmospheric heat and water vapor budgets. The cold atmosphere produces a larger amount of ice clouds that cover a larger area than the warm atmosphere does. The large amounts of ice clouds lead to cooling of the ocean surface through reflecting large amount of solar radiation back to the space. Thus, the negative correlation between the cloud amount and SST only accounts for the important atmospheric effects on the ocean.  相似文献   

11.
On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout and beyond the Arctic.  相似文献   

12.
High interannual variability of sea ice thickness in the Arctic region   总被引:9,自引:0,他引:9  
Laxon S  Peacock N  Smith D 《Nature》2003,425(6961):947-950
Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.  相似文献   

13.
为了探究环境温湿配置对雷暴云微物理、电过程及闪电的影响,本文利用法国三维非静力中尺度数值模式Meso-NH,通过改变该模式初始各层的环境温度和相对湿度,对南京地区雷暴云云微物理过程及闪电活动的发生情况进行了模拟。研究发现:大气低层、中低层环境温度和湿度的改变对雷暴云中对流强度,电场强度及分布,4种水成物粒子(雨、冰晶、雪、霰)的分布及其所带电荷量和总闪电数造成了较大影响;在低层和中低层增湿对雷暴云及闪电发生的增强效果要好于增温;在中层和中高层,降温对雷暴云及闪电发生的增强效果要好于降湿。结果表明,对低层、中低层大气环境温湿层结的影响能显著地改变雷暴云的云微物理过程,影响起电和放电,并剧烈地改变闪电活动的强度。  相似文献   

14.
Grant AN  Brönnimann S  Haimberger L 《Nature》2008,455(7210):E2-3; discussion E4-5
The vertical structure of the recent Arctic warming contains information about the processes governing Arctic climate trends. Graversen et al. argue, on the basis of ERA-40 reanalysis data, that a distinct maximum in 1979-2001 warm-season (April-October) Arctic temperature trends appears around 3 km above ground. Here we show that this is due to the heterogeneous nature of the data source, which incorporates information from satellites and radiosondes. Radiosonde data alone suggest the warming was strongest near ground.  相似文献   

15.
Thorne PW 《Nature》2008,455(7210):E1-2; discussion E4-5
Relative rates of temperature change between the troposphere and surface, and the mechanisms that produce these changes, have long been a contentious issue. Graversen et al., predicated upon the ERA-40 reanalysis, report polar tropospheric amplification of surface warming and attempt to explain this finding dynamically. Here we show (1) that data from satellites and weather balloons indicate that the ERA-40 trends are increasingly unrealistic polewards of 62 degrees N; (2) that the two other reanalyses considered exhibit very different polar trends; and (3) that the vertical profile of polar trends in ERA-40 is unrealistic, particularly above the troposphere. These quasi-independent strands of evidence imply that the pattern of warming in the Arctic troposphere is highly unlikely to be as given in ERA-40 and as reported by Graversen et al..  相似文献   

16.
回顾北冰洋海平面观测和研究现状,总结了北冰洋海平面变化特征和变化机制。北冰洋海平面季节变化受海冰生消、蒸发降水和陆地径流季节变化的影响,由比容变化主导;年际到年代际海平面变化受北极涛动影响显著,可用风场异常导致的淡水分布来解释。盐比容变化是深水洋盆海平面变化的主导因素,由之引起的质量变化控制陆架海域和北冰洋平均的海平面变化。近期波弗特环流区域海平面上升极快,与波弗特高压持续增强及淡水积聚有关。气候变暖会导致北冰洋海平面持续上升。海冰快速减退和格陵兰岛冰川融化对北冰洋海平面变化的影响有待深入研究。数据的短缺和观测的不确定性目前仍然制约北冰洋海平面变化的研究工作,高分辨率数值模拟有望成为未来研究的重要工具。  相似文献   

17.
冬季北极海冰面积异常与中国气温变化之间的年际关系   总被引:3,自引:0,他引:3  
利用1957-2001年冬季的北极海冰资料、中国160站气温资料以及NCEP再分析的大气环流资料分析了冬季北极海冰面积异常与中国气温变化之间的年际关系.过去44年来,北极海冰面积总体上具有减小趋势(鄂霍次克海是例外,那里海冰面积有增加趋势),相应地北极涛动趋于增强,我国大部分地区趋于增暖.叠加这种趋势变化之上的是年际变化.在年际时间尺度上,冬季海冰变化的主要空间型表现为格陵兰海和白令海的海冰异常总是和鄂霍次克海、巴伦支海东部、喀拉海(新地岛附近)以及哈得孙湾的海冰异常符号相反,并且与500 hPa高度场上的EU和WP型遥相关对应.当冬季格陵兰海和白令海的海冰异常偏少,而鄂霍次克海、巴伦支海东部、喀拉海(新地岛附近)以及哈得孙湾的海冰异常偏多时,西伯利亚高压和阿留申低压都偏弱,冬季风减弱,东亚西风增强,我国冬季大部分地区温度升高;反之亦然.  相似文献   

18.
Moore GW  Holdsworth G  Alverson K 《Nature》2002,420(6914):401-403
The relatively short length of most instrumental climate records restricts the study of climate variability, and it is therefore essential to extend the record into the past with the help of proxy data. Only since the late 1940s have atmospheric data been available that are sufficient in quality and spatial resolution to identify the dominant patterns of climate variability, such as the Pacific North America pattern and the Pacific Decadal Oscillation. Here we present a 301-year snow accumulation record from an ice core at a height of 5,340 m above sea level-from Mount Logan, in northwestern North America. This record shows features that are closely linked with the Pacific North America pattern for the period of instrumental data availability. Our record extends back in time to cover the period from the closing stages of the Little Ice Age to the warmest decade in the past millennium. We find a positive, accelerating trend in snow accumulation after the middle of the nineteenth century. This trend is paralleled by a warming over northwestern North America which has been associated with secular changes in both the Pacific North America pattern and the Pacific Decadal Oscillation.  相似文献   

19.
A satellite view of aerosols in the climate system   总被引:55,自引:0,他引:55  
Kaufman YJ  Tanré D  Boucher O 《Nature》2002,419(6903):215-223
Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.  相似文献   

20.
The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号