首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用电导原理对气-液两相弹状流中的弹状气泡速度、液塞速度、弹状气泡长度和液塞长度进行了测量.得到了各自随表观气速或表观液速的变化规律.并对弹状气泡长度进行了统计分析,结果表明:弹状气泡长度在显性水平α=0.05的条件下符合正态分布.  相似文献   

2.
两相弹状流中液弹及气泡合并情况的研究   总被引:3,自引:0,他引:3  
对气液两相弹状流中液弹和气泡合并情况进行了研究.得出最小稳定液弹长度是液弹尾部达到充分发展的速度分布所需的长度.通过对液弹内弥散气泡的统计分析,得出稳定液弹内不存在直径大于5mm的气泡.借助流动可视化技术,对弹状流中各种尺寸气泡的合并情况进行了描述,得出小气泡之间的合并为二元式合并,而小气泡与大气泡之间的合并是非二元式合并.  相似文献   

3.
垂直及倾斜上升弹状流的实验研究——下降液膜   总被引:1,自引:0,他引:1  
目的 研究垂直及倾斜上升弹状流中下降液膜的流动特性。方法 采用EKTAPRO1000型高速动态分析仪测量垂直及倾斜上升管内气液两相弹状流中下降液膜运动速度及其厚度沿Taylor气泡的变化情况。结果 获得了有关下降液膜流动特性的无干扰流场测量数据。结论 液膜的流动特性与管倾角、气液流速以及Taylor气流长度有关,其中气泡长度是最主要的影响因素,在高混合物流速下,流动趋于轴对称,此时可忽略倾角的影响  相似文献   

4.
应用分流层的平衡液膜理论和有限振幅界面波的势流理论,以不稳定界面波生长至波幅可跨接水平管上管壁为液弹形成的充分条件,导出了水平管弹状流液弹频率的计算模型.应用电导探针在内径24mm、长度与内径之比大于600的水平管中测量了水-空气弹状流的液弹频率.模型计算结果与试验结果相吻合.  相似文献   

5.
倾斜上升气液两相弹状流模型   总被引:1,自引:0,他引:1  
基于等效弹单元思想,发展了一组方程,以此来预测生趣及近垂直倾斜上升管中充分发展气液弹状流的流动特性,模型中考虑了界面切应力对液膜运动的影响;并在液弹空隙度预测中引入临界气体夹速度的概念,以此来描述弹状流中在在气泡尾部的混合特性,本文提出的模型这径对液弹空隙度的影响,弹状流模型的计算结果得到实验的验证。  相似文献   

6.
为研究倾斜管内低温气液两相流中弹状气泡初始生成位置的分布规律,采用高速相机对以液氮为工质的6种竖直倾角和4种内径下的管内弹状流进行了可视化实验,并对管路漏热进行了详细考察.实验结果表明,弹状气泡平均初始生成位置随管径的增大而增大,随倾角的增大先增大后减小;弹状气泡初始生成位置分布的离散程度随倾角增大而增大,在倾角为20°~45°时达到最大值,之后,其分布变为集中;竖直管路内弹状气泡初始生成位置离散程度随管径增加而减小.  相似文献   

7.
油水气多相混输是海上油气田开发中赖以取得重大经济效益的技术,其流动特性的准确计算是管线设计及安全、经济运行的重要依据.首先,通过实验确定出了油水两相混合物由油包水(W/O)向水包油型(O/W)的转变发生在含水率约为0.45时.垂直下降管内油水气三相流的流型基本上可以划分为油包水和水包油型的泡状流、弹状流及环状流.通过对垂直下降管内气泡碰撞、合并机理的分析建立了油水气三相流动过程中泡状流与弹状流间的转变界限的计算式,该转变发生的临界截面含气率约为0.35,计算结果与实验值的平均误差为11%.泡状流向弹状流的转变主要取决于折算气速和折算液速的大小,含水率对转变界限的影响较弱.  相似文献   

8.
采用高速动态分析系统和光纤含气率测量仪,研究了垂直上升管内油-气-水三相弹状流流动特征的规律.实验表明,短时域内平均截面含气率是判断三相流流型的有效方法.通过改变三相流系统中的体积含水率,研究了它对液弹内平均截面含气率的影响;最后,用高速动态分析仪可视化测定了各个工况下的平均液弹长度.  相似文献   

9.
根据气液段塞流气弹区相界面结构特征将气弹区分为气弹头、气弹体、水跃面和气弹尾四部分,并根据各自的流动和界面结构特征分别进行模化,建立了描述不同倾角的圆管内气液段塞流气弹区相界面结构的一维理论模型.该模型的计算结果表明,气液混合Froude数、管道倾角和气弹长度显著影响气液段塞流气弹区相界面结构,计算与实验结果吻合良好.  相似文献   

10.
垂直管内气液两相弹状流中长气泡运动规律的研究   总被引:1,自引:1,他引:1  
用EKTPRO 1000高速动态分析仪对弹状流中长气流的运动进行了研究,获得了无干扰流场的测量数据,给出了气泡形状及其上升速度的实验结果,根据长气泡的流动条件,对它们进行了分类,实验数据与已有的研究结果进行了比较,两者符合良好。  相似文献   

11.
在内径 5 4mm、长 2 4m的水平有机玻璃管中利用空气水为试验介质对段塞流特征参数的测量方法进行了研究。利用上、下游两个压力信号相减得到差压信号 ,用电导探针测量了波高信号。分析了压力信号、差压信号和波高信号之间的对应关系 ,给出了利用差压信号相关测量液塞速度的方法 ,提出了“差压渡越时间”的新概念 ,并根据差压渡越时间这一概念提出了测量液塞长度的新方法。同时探讨了利用压力和波高信号测量段塞流特征参数的可能性和优缺点。试验结果表明 ,利用差压信号相关易于测量液塞速度、液塞频率和段塞单元长度 ,但用差压信号不能测量段塞流持液率的变化。液塞速度随气液混合物速度增大而增大 ,滑脱系数C0 不是一个常数。用波高信号相关可以测得液相平均速度。用波高和压力信号不易于测量液塞频率和段塞单元长度。  相似文献   

12.
为揭示下倾管段塞流的流动规律,在内径50 mm、长27.43 m的不锈钢多相流试验环道上对下倾管段塞流的特征参数进行了试验研究。采用差压波动信号相关分析技术,分析了气液相折算速度、混合速度以及管线倾角变化对液塞速度、平均液塞长度、最大液塞长度以及液塞频率的影响。结果表明,随混合速度的增加,液塞速度不是线性增加,而且对管线倾角的变化不敏感;平均液塞长度随着混合速度增大呈先减后增的变化趋势,但随着倾角的变化没有明确的规律,而当Froude数大于16时,管线倾角对最大液塞长度的影响减小;液塞频率随气、液相折算速度增加而单调增加,且倾角越大,液塞频率越小。  相似文献   

13.
分析了前人提出的段塞跟踪模拟方法的优缺点 ,根据液塞头部的加速压降和入口液塞长度分布特征对段塞跟踪模型进行了改进。采用面向对象技术 ,实现了水平和倾斜管道段塞流的跟踪模拟 ,并与多相流试验环道的空气水试验数据进行了对比。模拟结果表明 ,当不考虑加速压降时 ,用跟踪模型预测的压降低于实测值 ;当考虑加速压降时 ,用跟踪模型预测的压降高于实测值。在管道上固定位置测出的压力信号符合正态分布 ,管道上某一固定点处液塞头部和尾部的速度分布也符合正态分布。当不考虑气泡尾波作用时 ,液塞长度沿管线增长较慢 ,分布形状无变化 ;但是考虑气泡尾波作用时 ,在入口附近液塞长度平均值增长较快 ,统计分布沿管轴向呈对数正态分布。  相似文献   

14.
利用以自相似性为基础的分形理论对管内径为 5 0mm的水平管道的段塞流液塞长度分布进行了统计分析。结果表明 ,水平管中的液塞长度分布遵循分形统计规律 ,充分发展段的平均液塞长度为管径的 11~ 17倍 ,最大液塞长度为管径的 2 5~ 39倍 ,平均液塞长度和最大液塞长度均与气液相混合速度之间具有线性关系。试验研究还表明 ,重标度极差分析法是计算反映液塞长度波动过程具有长程相关性的Hurst指数的有效方法。Hurst指数与气液相混合速度之间具有缓降的线性关系 ,可以用Hurst指数反映出的FBM随机过程的持久性和反持久性预测液塞长度的发展趋势  相似文献   

15.
严重段塞流压力波动特性试验   总被引:2,自引:0,他引:2  
为了考察上升管中严重段塞流的变化规律,在强烈段塞流模拟试验装置上利用压力传感器对严重段塞流进行了测试.通过对单个液塞经过管道上某一测压点时的压力信号的理论分析,给出了压力波动曲线上的特征点与液塞相对于测压点位置之间的对应关系,并得到了利用单压力信号求得液塞运动速度、液塞长度和循环周期等特征参数的方法.研究结果表明,在进口气液相流量恒定的流动中,严重段塞流具有严格的周期性,它的液塞速度、液塞长度和循环周期等参数随时间变化而波动的幅度很小.  相似文献   

16.
针对柱寒流含气率分布不明确的问题,在分析现有试验数据基础上,以含气率为标准提出柱塞流新的划分方式,建立柱塞流物理模型.综合考虑含气率径向和轴向的分布,对柱塞流含气率和过渡段长度的分布规律进行研究,并进行误差分析.结果表明:过渡段长度和含气率的分布主要受表观含气率的影响;过渡段长度在径向上的衰减主要由气液两相流速关系决定;含气率以及过渡段长度分布的计算值与试验值符合较好.  相似文献   

17.
在气液两相循环实验系统中开展了水动力段塞流诱导的悬链线型柔性立管振动响应测试,利用高速摄像非介入测试方法同步捕捉了柔性立管的振动位移与管内的段塞流动细节,预测了气体表观流速对水动力段塞流诱导柔性立管振动响应的影响规律,分析了振幅响应、模态权重、频谱变化以及管内流动特性.结果 表明,随着气体表观流速的增大,振动幅度逐渐增...  相似文献   

18.
强烈段塞流特征参数试验研究   总被引:4,自引:1,他引:4  
为了寻求强烈段塞流特征参数的变化规律,在高4m、内径50mm的管线中利用双平行电导探针测试了强烈段塞流的持液率信号,并用互相关法对其进行了分析,得到了强烈段塞流的液塞速度、液塞长度随气、液相折算速度及下倾管倾角的变化规律。结果表明,当气相折算速度恒定时,随着液相折算速度的增大,液塞速度、液塞长度均线性增大;当液相折算速度恒定时,随着气相折算速度的增大,液塞速度线性增大,而液塞长度呈双曲型减小;当气、液相折算速度恒定时,随着下倾管倾角的增大,液塞速度、液塞长度都稍有增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号