首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 91 毫秒
1.
采用低过饱和共沉淀法合成了物质的量比为2,3,4的镍铁和钴铁水滑石.XRD分析表明二者晶体结构相似,球分析表明稳定性:镍铁水滑石强于钴铁水滑石.  相似文献   

2.
镁铝水滑石热分解机理函数研究   总被引:2,自引:0,他引:2  
采用共沉淀法合成了镁铝摩尔配比为3的类水滑石,利用TG-DTG技术研究了在氮气氛围下镁铝类水滑石非等温热分解过程,并对其热分解机理函数进行了探讨。实验结果表明,镁铝水滑石热分解过程由两个阶段完成,且两阶段的热解机理函数均为化学反应机理函数,其积分式为G(α)=(1-α)-1-1。  相似文献   

3.
目的:研究了腺苷的热解过程及非等温动力学,方法:采用了TG-DTG热重仪与红外技术测定腺苷的热解曲线,用Ozawa多升温速率法以及Achar微分法和Coats-Redlfern积分法确定热分解函数,结果:由TG及IR解析了热解过程并得到动力学参数活活化能E,指前因子A,结论:腺苷的热解产物为腺嘌吟,第1步热分解动力学表达式为:dα/dt=Ae^-E/RT2(1-α)[-1N(1-α)]^1/3.  相似文献   

4.
本文合成了Ni(Ⅱ)的一个配合物Ni(Nica)2Cl2(Nica表示尼克酰胺)。用元素分析、红外光谱、热重及量热分解对该配合物进行了表征,并对其热分解过程进行了研究,运用Achar法和Coats-Redfern法,推断出该配合物第一步热分解的非等温动力学方程为:dα/dt=Ae^-E/RT3/2(1+α)^2/3[(1+α)^1/3-1]^-1。  相似文献   

5.
印刷线路板热分解动力学特性   总被引:22,自引:1,他引:21  
应用热重法对印刷线路板在不同的氮气/氧气气氛、不同的加热速率条件下的反应动力学进行研究。采用Friedman多个升温速率法分析反应机理,得到了不同氧浓度和加热速率下的反应动力学方程及动力学参数。研究表明:在氧气存在条件下,样品热分解反应分为两个阶段,加热速率的提高使热分解反应推迟,两个阶段反应过程的表观活化能有很大差别,反应分别受不同的化学反应机理控制。  相似文献   

6.
烟酸是维生素PP的一种存在形式,在生物体内与许多酶的生物活性有关,参与体内的生物氧化过程.烟酸可与许多生命必需的微量元素形成配合物,有关配合物的合成工作已有许多报道[1~2],但对其热分解机理及动力学研究则未见报道.作者对烟酸镍(Ⅱ)配合物Ni(C6H5NO2)2Cl2进行了合成,应用Achar法和CoatsRedfern[3]法对该配合物的热分解的非等温动力学过程进行了推断  相似文献   

7.
层状双金属氢氧化物的热分解及动力学研究   总被引:6,自引:0,他引:6  
研究层状双金属氢氧化物(LDH)的热分解过程对以其为前体制备双金属复合氧化物可提供理论指导。采用热重差热分析研究了镁铝摩尔比分别为2、3和4的LDH的热分解行为,并对热分解过程进行了动力学研究。采用红外光谱以及X射线衍射研究了Mg2Al-LDH在不同焙烧温度热分解产物的结构特点,结果表明层间碳酸根阴离子的脱除温度范围宽,约从250℃到700℃,但主要是在330~400℃之间进行的;LDH热分解过程脱除层间阴离子和层板羟基脱水的同时,伴随新相生成,500~700℃条件下,LDH的分解过程比较完全,形成了双金属氧化物。  相似文献   

8.
钴铁水滑石的合成及表征   总被引:3,自引:0,他引:3  
以Co(NO3)2·6H2O和Fe(NO3)3·9H2O为原料,以NaOH和Na2CO3为沉淀剂合成了一系列钴铁水滑石,通过XRD,IR,TG-DTA,ICP等手段对样品进行测试和表征,X衍射结果显示,其理想构型的Co/Fe摩尔比为2~5.  相似文献   

9.
氯丁橡胶热分解动力学研究   总被引:3,自引:1,他引:3  
对国产和进口氯丁橡胶(CR)热分解动力学进行研究,结果表明,CR的热降解过程分 3步进行,N2气氛下的明显起始分解温度为 260℃,推得热分解反应级数为一级,热分解反应活化能为 148kJ·mol-1,分解反应的频率因子为 2×10-11.  相似文献   

10.
聚氯乙烯材料的热分解特性的研究   总被引:2,自引:1,他引:1  
用热重法研究了聚氯乙烯装饰材料在不同的加热速率、不同的气氛下的热分解特性。用最小二乘法计算了聚氯乙烯材料在脱氯化氢反应的动力学参数,分解反应的活化能和反应级数。  相似文献   

11.
用热重法研究AlCl3与二水合草酸混合物的非等温热分解动力学,在AlCl3与二水合草酸摩尔比不同的情况下,分解过程及分解产物也有所不同,第一步分解:样品(3:100)分解产物的一水合草酸,样品(6:100;9:100:12:100)分解产物为草酸酐,样品(3:100)和样品(6:100;9:100;12:100)的机理函数均为8号机理,动力学方程为dα/dr=Ae^-Ea/Rr(3/2)(1-α)[-ln(1-α)]^1/3。但样品(3:100)比样品(6:100;9:100;12:100)的活化能要高些,第二步分解:样品(3:100)对应10号机理,动力学方程为dα/dt=Ae^Ea/Rt3(1-α)[-ln(1-α)]^2/3,而样品(6:100;9:100;12:100)对应9号机理,动力学方程为dα/dt=Ae^-Ea/Rt2(1-α)[-ln(1-α)]^1/2。  相似文献   

12.
TG—DSC联用技术在磷矿石热分解上的应用   总被引:1,自引:0,他引:1  
运用TG—DSC联用技术研究了磷矿石的热分解过程,得到了磷矿石在不同粒度、不同升温速率下的TG—DSC曲线.结果显示磷矿石在40~1100℃范围内可分为4次失重阶段;随着粒度的减小。TG曲线中的失重阶段更为明显和彻底,DSC曲线的吸热峰更为尖锐;随着升温速率的提高,磷矿石热解段起始和终止温度向高温侧移动,且失重率也有增大的趋势;使用Ozawa法计算了磷矿石在600~800℃吸热分解过程的活化能,平均值为202.80kJ/mol,为磷矿石的资源化利用提供依据.  相似文献   

13.
运用TG-DSC联用技术研究了磷矿石的热分解过程,得到了磷矿石在不同粒度、不同升温速率下的TG-DSC曲线.结果显示磷矿石在401 100℃范围内可分为4次失重阶段;随着粒度的减小,TG曲线中的失重阶段更为明显和彻底,DSC曲线的吸热峰更为尖锐;随着升温速率的提高,磷矿石热解段起始和终止温度向高温侧移动,且失重率也有增大的趋势;使用Ozawa法计算了磷矿石在6001 100℃范围内可分为4次失重阶段;随着粒度的减小,TG曲线中的失重阶段更为明显和彻底,DSC曲线的吸热峰更为尖锐;随着升温速率的提高,磷矿石热解段起始和终止温度向高温侧移动,且失重率也有增大的趋势;使用Ozawa法计算了磷矿石在600800℃吸热分解过程的活化能,平均值为202.80 kJ/mol,为磷矿石的资源化利用提供依据.  相似文献   

14.
FeS诱发含硫油品自燃的事故受到了业界的日益关注。通过在不同升温速率(2,5,8,10,15℃/min)下的热分析实验,应用模型和非模型拟合研究了FeS的热分解动力学机理,结果表明:FeS受热氧化是FeS与氧气物理吸附、化学吸附和化学反应过程,对FeS的模型拟合结果不稳定,可靠性较差;采用等转化率法得到FeS热分解的表观活化能E=(135.81±8.27)kJ/mol;通过Satava-Sestak方程确定了FeS的受热分解符合成核和生长模型函数A2:g(α)=[-ln(1-α)]1/2,其表观活化能E=148.43kJ/mol,表观指前因子A=3.82×109 K/s。  相似文献   

15.
将木粉、高密度聚乙烯(HDPE)与不同含量的废旧橡胶粉复合制备木橡塑复合材料,采用热重分析法(TGA)研究各组分材料及复合材料的热解动力学特性,并引入Flynn-Wall-Ozawa模型量化了组分及复合材料的表观活化能。结果表明:木粉、HDPE、废旧橡胶粉复合材料(WRPC)的热解出现两个显著的失重区(230~380 ℃和430~580 ℃),分别对应木粉/废旧橡胶和HDPE的热降解。木粉、废旧橡胶和HDPE热解过程平均活化能值分别为179.2、243.8和246.8 kJ/mol,WPC(木粉、HDPE复合材料)平均活化能为239.3 kJ/mol,WRPC活化能值较WPC低(200.3~208.4 kJ/mol)。活化能的变化表明木、橡、塑3种原料在复合材料的热解过程中具有协同效应,而废旧橡胶的掺入对复合材料的热降解特性发挥了显著的调控作用。  相似文献   

16.
以硫酸镍热分解过程为例,使用主成分回归法拟合了样品用量与表观活化能实测值之间的关系式,并讨论了主成分回归法在这一类问题中应用的特点。  相似文献   

17.
酸溶法是目前对蒙脱石进行活化处理的主要方法之一。文章首先分析了影响酸溶速率的主要因素,并在得出的最佳溶出条件下对Al2O3的溶出速率进行研究;结果表明,蒙脱石结构中Al2O3的盐酸溶出过程适用平板-内扩散控制模型,其浸出率X对反应时间t的关系可表示为(1-X)2=-kt;其表观活化能约为24.3 kJ/mol。  相似文献   

18.
本文研究了具有桥环侧基的丙烯酸异冰片基氧烷基酯的自由基聚合反应动力学,测试了聚合物的光、热、硬度等性能。得到了氧烷基为氧乙基、氧丙基、氧丁基的聚合反应动力学方程分别为:Rp=k[BPL]^0.5[IBOEA]^1.0,p=K[BOP]^0.5[IBOPA]^1.0,Rp=k[BPO]^0.5[IBOBA]^1.0;聚合反应表观活化能分别为:87.95KJ/mol,88.62kJ/mol,101.1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号