首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
足够精度的应力腐蚀裂纹无损定量方法研究,对确保核电站等大型结构的安全、高效运行具有重要应用价值。但是,由于微观结构复杂,应力腐蚀裂纹涡流定量检测常出现欠评估和多个极值的问题。为了充分利用多频涡流检测信号信息,提高重构精度,提出了应力腐蚀裂纹定量的多目标评价策略和求解多目标优化的ε-约束法。几个模拟的应力腐蚀裂纹重构结果表明,所提策略在提高应力腐蚀裂纹深度的定量精度上是有效的。  相似文献   

2.
针对含曲率结构中裂纹缺陷的检测,采用数值仿真方法研究了超声红外热波技术的可行性。建立不同曲率含有裂纹缺陷复合材料构件的有限元模型,在超声波的激励作用下,获得了构件表面温度分布图,实现了对裂纹缺陷的检测,并对比分析了构件的曲率对检测结果的影响。结果表明:超声热波方法可以应用于含曲率结构的裂纹缺陷检测,并且结构的曲率越大,检测结果越好。  相似文献   

3.
建立合理的应力腐蚀裂纹模型对于利用电涡流法定量评估裂纹大小起着至关重要的作用。通过对应力腐蚀裂纹的电涡流法检测实验信号与模拟信号的分析,研究了应力腐蚀裂纹的导电性。结果表明,讨论应力腐蚀裂纹的等效电阻比单独讨论等效宽度及等效电导率更有意义。采用应力腐蚀裂纹的分布导电性模型更有利于重建基于电涡流信号的裂纹形貌。  相似文献   

4.
纵向应力波对裂纹探测研究   总被引:3,自引:0,他引:3  
本文利用弹性纵波理论,讨论应力波在裂纹处的反射和透射规律,从而根据应力波反射时间和强度确定出裂纹的位置和大小,计算和实验结果表明该理论模型和方法在测试中是有效的。  相似文献   

5.
铝合金应力腐蚀开裂的研究进展   总被引:8,自引:0,他引:8  
应力腐蚀开裂作为一种局部腐蚀形式,是指金属材料在拉应力和特定介质的共同作用下所引起的破坏。针对近10年来文献报道的纯Al、AlLi合金、AlCu合金、AlMg合金、AlZnMg合金的应力腐蚀开裂的研究情况,从开裂机理、冶金效应、环境效应三个方面进行了总结。  相似文献   

6.
红外热波无损检测技术是一种快速、有效的检测手段,可以定量检测铝槽试件下表面缺陷的深度.本文通过几种经典的边缘检测算子对热波图像的处理,表明识别缺陷边缘信息直观、可视化程度高,可作为实验结果的参考依据.  相似文献   

7.
管道应力波检测技术及研究进展   总被引:1,自引:0,他引:1  
综述了应力波检测技术及其应用研究进展,对应力波技术在管道损伤检测中的应用进行了重点评述,主要内容涉及应力波的传播特点、实验检测方法及数据处理方法等,最后对这一研究领域的未来发展进行了展望。  相似文献   

8.
超声检测中裂纹型缺陷深度的智能识别   总被引:6,自引:0,他引:6  
为了实现对裂纹型缺陷深度的定量识别,提高超声检测精度,引入小波分析和人工神经网络技术进行缺陷深度的智能识别,从超声检测的基本原理、缺陷深度表征量的确定、超声回波信号缺陷特征量的小波提取、神经网络的结构参数及训练和测试网络等方面,详细探讨了对裂纹型缺陷进行智能识别的方法,论证了运用神经网络进行缺陷智能定量识别的可行性,构造了智能识别实验系统,并利用该系统对所加工的含缺陷试样进行了定量识别试验与分析,结果表明,小波分析和人工神经网络技术的引入能够为超声检测缺陷的定量识别提供行之有效的途径。  相似文献   

9.
材质为ASTM A240 316L不锈钢夹层锅的简体内壁出现了许多裂纹.通过现场观察、材质分析、金相检验等检测方法对筒体内壁裂纹的宏观形貌、显微组织、腐蚀产物并结合夹层锅的工况等进行分析.结果表明,不锈钢夹层锅的简体在富含氯离子的环境中,在氯离子和拉应力的共同作用下,发生应力腐蚀开裂.  相似文献   

10.
传统的结构健康监测技术容易受到温度、振动噪音等与结构缺陷无关的因素影响.为了克服这一缺陷,发展了一种基于传递阻抗的无基准裂纹检测方法.该方法既不需要基准数据,也不需要损伤阈值,而是利用裂纹导致的Lamb波模式转换效应和PZT极化特性从两组并排的PZT元件间获取传递阻抗,通过比较传递阻抗的能量来判断裂纹是否存在.仿真和实验表明,该方法无需选择最优的激励频率和采样时间即可实现对裂纹的检测,具有较强的鲁棒性和适用性.  相似文献   

11.
超声平测法检测钢筋混凝土结构裂缝深度   总被引:1,自引:0,他引:1  
已有的理论和试验研究主要解决的是裂缝的宽度检测,裂缝深度检测技术仍然是当今最热门的研究课题。文章介绍了超声平测法检测钢筋混凝土结构裂缝深度的基本原理,在此基础上推导了超声波在经过钢筋混凝土中的传播速度计算式;并验证了计算公式和试验原理的可行性;最后讨论了该检测方法的适用范围。  相似文献   

12.
为明确应力水平及暴露时间对2219铝合金腐蚀损伤力学性能的影响,选择在不同应力水平作用下暴露于EXCO腐蚀溶液中,经不同时间加速腐蚀后的2219铝合金试样,开展表面蚀坑深度测量、力学性能测试、拉伸断口形貌观察试验。结果表明,应力水平、暴露时间都是影响试样应力腐蚀损伤发展从而影响材料力学性能变化的重要因素。在腐蚀的初期阶段,即0.0~1.5 h,应力水平因素的影响有限;当暴露时间大于等于2.0 h,应力水平引起的以蚀坑平均深度为表征的腐蚀损伤更加显著。但在试验时间(2.5 h)内,应力水平对腐蚀损伤所产生的影响小于暴露时间,因而对材料力学性能变化的影响也小于暴露时间。腐蚀损伤造成的点蚀坑、微裂纹破坏了材料的连续性,使试样材料的抗拉强度、延伸率、弹性模量等力学性能指标下降,是促使材料在拉伸试验中没有经过充分的塑性变形阶段就发生瞬间断裂的重要原因。深度大的点蚀坑、微裂纹,可能成为断口主裂纹的起源。  相似文献   

13.
丙酸乙酯与金属钠还原缩合,采用超声波加速反应合成丙偶烟。结果表明,采用超声波法,反应时间由普通方法的6h缩短为3.5h,收率为55.8%,高于普通方法的51.6%。  相似文献   

14.
对于铝合金材料中存在的Ⅰ型裂纹及混合型预裂纹,研究了残余应力及其材料中存在的缺陷对其扩展方向的影响.对应于实验过程中的实际裂纹,通过有限元解析模拟计算出无残余应力状态下裂纹端部的应力强度因子KⅠ和KⅡ,从理论上利用Erdogan-Sih的б0假说对裂纹的扩展方向作了预测.结果表明,无论是Ⅰ型预裂纹还是混合型预裂纹,其预测的裂纹扩展方向都与裂纹扩展的实验结果基本吻合.即裂纹的扩展方向主要受到循环载荷的影响,而与残余应力无关.  相似文献   

15.
采用微弧氧化(MAO)技术在7050铝合金表面制备了陶瓷膜层,运用扫描电子显微镜(SEM)和能谱分析仪(EDS)表征陶瓷膜微观结构,采用动电位极化曲线、电化学阻抗谱(EIS)和慢应变速率拉伸试验(SSRT)研究了微弧氧化膜对7050铝合金在3.5%(质量分数)NaCl水溶液中腐蚀和应力腐蚀开裂(SCC)行为的影响.结果表明:微弧氧化膜层由表面疏松层与内部致密层组成,表面疏松层主要由Al2O3组成,内部致密层由氧化铝与铝烧结而成.微弧氧化膜层可以有效抑制7050铝合金表面的腐蚀萌生及明显降低腐蚀速率,且使7050铝合金的应力腐蚀敏感性出现显著下降.  相似文献   

16.
超声波清洗的一种新方法   总被引:5,自引:1,他引:5  
基于超声波传播的机理,提出了一种无需清洗液且有别于常规超声波清洗机理的超声波振动清洗方法,并阐明了选取各超声参量时应注意的问题,实验结果表明,该方法简单可靠,且清洁度更高。  相似文献   

17.
响应面法优化超声波辅助提取红曲米中水溶性色素   总被引:5,自引:1,他引:5  
研究了红曲米中水溶性色素的超声波辅助提取法的提取工艺.在单因素实验的基础上,采用响应面法研究了超声时间、液料比和超声功率对提取液色价的影响,建立了二次回归模型,得到了提取工艺的最优条件.研究结果表明以上3因素对红曲米中水溶性色素的提取均有显著影响.在提取工艺条件:超声时间为20.6 min,液料比为32.2∶1,超声功率为730 W下提取,红曲米中水溶性色素的色价达到最大值,为570.5 U/g.  相似文献   

18.
超声波对苯酚有机废水降解研究   总被引:6,自引:0,他引:6  
应用超声波降解苯酚有机废水.结果表明,芳香族有机物苯酚易被超声释放到水中的自由基氧化,产生毒性小或易被生物降解的有机物中间体,并可进一步氧化分解成CO2与H2O等,从而使废水中有机碳下降,达到降解目的.加入无污染的强氧化剂(H2O2与O3等),将加快降解速度.  相似文献   

19.
RRA处理对超高强铝合金抗应力腐蚀性能的影响   总被引:1,自引:3,他引:1  
通过力学性能、电导率及拉伸应力腐蚀性能测试、扫描电镜及透射电镜观察,研究回归再时效(RRA)热处理工艺对一种新型低频电磁铸造合Al-9.99%Zn-1.72%Cu-2.5%MR-0.13%Zr(质量分数)的力学性能和抗应力腐蚀性能的影响,探讨RRA处理后合金的电导率与抗应力腐蚀性能的关系。研究结果表明:在峰值时效T6状态下合金强度高,但抗应力腐蚀性能差;采用合适的RRA热处理工艺既能使合金保持T6状态下的高强度的同时,又能显著改善合金的抗应力腐蚀性能;经回归7minRRA处理后合金的晶界类似T73态析出相聚集粗化,而晶内类似T6态析出相细小弥散分布,在拉伸应力为210MPa和3.0%NaCl+o.5%H2O2腐蚀液中,共断裂时间大于720h,相应的抗拉强度、屈服强度和延伸率分别为195MPa,767MPa和9.1%,显示优越的综合性能。此外,RRA处理后合金的电导率与拉伸应力腐蚀性能为正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号