首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
气液混输管道中流体流动复杂,流体对管壁冲刷严重,管道中含有固体颗粒极大地加剧了管内介质对管壁的冲击,极易造成管道冲蚀破坏。为研究含固体颗粒管道在段塞流/乳沫状流下的冲蚀速率,提出一种基于段塞体颗粒分布的冲蚀计算方法,在Eulerian坐标系下求解气液混合相连续相流场,Lagrangian坐标系下求解颗粒离散相运动轨迹,利用Oka,et al冲蚀模型及Grant和Tabakoff颗粒-壁面碰撞模型计算管壁冲蚀速率。结果表明:提出的CFD冲蚀计算模型计算结果与实验值最接近,且与Chen等的简化计算方法相比,精确度有较大提高;竖直弯管段塞流/乳沫状流中的固体颗粒主要位于段塞体和液膜中,段塞体和液膜中的固体颗粒分布不均匀,段塞体中固体颗粒含量较多;固体颗粒在段塞体中的分布系数约为0.827。  相似文献   

2.
水下发球系统具有作业成本低、无需长时间停井的优势,应用前景广泛。发球管汇系统管道结构复杂,管道内流场变化规律不清,出砂现象严重,在发球过程中会出现高流速,易发生冲蚀。基于某水下发球管汇系统,应用计算流体力学(computational fluid dynamics, CFD)的方法进行流场计算及冲蚀分析。结果表明,管内流速分布不均,弯管与T形管区域存在偏流;气液两相分布较为均一,但在竖直管段存在积液。对比冲蚀模型的计算结果,发现Generic与DNV模型计算结果相对准确;颗粒冲蚀速率较大的位置主要分布在含液区域或气液界面处,且竖直管段的冲蚀速率比水平管段更大;当颗粒含量为10×10-6 kg/m3时,颗粒直径为100μm时,最大冲蚀速率为0.21 mm/a;最大冲蚀速率随着砂颗粒含量的增大、含砂量的增大而增大;且随着砂粒直径的增大,冲蚀区域愈趋向集中。管内流速高,长时间运行时冲蚀现象严重,需加强关键冲蚀区域的防护措施,提高腐蚀裕量,以保障管汇系统的安全运行。  相似文献   

3.
采用数值模拟方法对龙开口水电站1号输水隧洞混凝土泵送过程中管道冲蚀磨损问题进行研究。利用离散相模型(DPM)分析泵送管道的冲蚀磨损机理,结合1号隧洞实际泵送混凝土的情况来验证数值模型是否正确。通过模拟从整个管道固相体积分数分布与弯管出口处的压强变化等特征理解其内在的多相流动规律,模拟得到的弯管最大冲蚀磨损部位与实际泵送过程中的磨损部位吻合较好。说明DPM冲蚀模型能准确预测泵送管道的磨损特性,可为泵送混凝土施工提供理论参考。  相似文献   

4.
由石油大学 (华东 )储运与建筑工程学院冯叔初教授主持完成的中国石油天然气股份有限公司“九五”重点科技攻关项目“油气水混相输送技术研究”子课题“凝析油气混输流动规律、水力、热力计算方法及软件编制” ,通过了中油股份公司组织的专家验收。科研人员在国内首次将化工相平衡理论和计算方法用于凝析天然气输送管道 ,用于判断相态、凝析液析出位置、管道内气液组成变化及热物性参数计算 ,给出凝析气相包络线等 ;提出了凝析天然气沿管道气液相组成变化的计算方法 ;对凝析气管道常见流型作了深入研究 ,提出了分层流、环状流新的流型转换准…  相似文献   

5.
采用数值模拟方法对龙开口水电站1号输水隧洞混凝土泵送过程中管道冲蚀磨损问题进行研究。利用DPM离散相模型分析泵送管道的冲蚀磨损机理,结合1号隧洞实际泵送混凝土的情况来验证数值模型是否正确。通过模拟结果从整个管道固相体积分数分布与弯管出口处的压强变化等特征理解其内在的多相流动规律。模拟得到的弯管最大冲蚀磨损部位,与实际泵送过程中的磨损部位吻合较好。说明DPM冲蚀模型能准确预测泵送管道的磨损特性,可为类似的泵送混凝土施工提供有益参考。  相似文献   

6.
为了研究重质稠油内砂粒对弯管的冲蚀作用,以90°弯管为研究对象,运用计算流体力学(computational fluid dynamics,CFD)软件建立液固耦合的离散相冲蚀模型(discrete phase model,DPM),利用SIMPLEC算法计算得到不同温度、砂粒粒径及质量流率下重质稠油输送管道弯管处冲蚀速率的变化规律。结果表明,同一流动状态下,随着温度升高,重质稠油的黏度及90°弯管的冲蚀速率皆呈指数递减趋势,最大冲蚀点出现在弯管90°方向线与侧壁面中线交点处;湍流流态下,90°弯管的冲蚀速率随砂粒粒径的增大而减小,稠油的黏性力对大粒径砂粒的束缚作用明显,冲蚀速率较低;湍流流态下,冲蚀速率随砂粒质量流率增加而增大,近壁面处砂粒与稠油间形成的黏性微团层对质量流率增加所引起的冲蚀具有一定缓解作用。  相似文献   

7.
针对液压锥阀阀口冲蚀磨损问题,运用Fluent中的离散相模型(DPM)进行了锥阀阀口流域固-液两相流数值计算.研究结果表明:在阀口主流束冲蚀与阀腔漩涡离心颗粒磨蚀联合作用下,阀口处阀芯壁面出现大面积冲蚀磨损,阀座拐角工作面冲蚀磨损率最大;随着压差和介质黏度的增大,阀座壁面的冲蚀磨损加剧;圆弧形阀座工作面具有"圆角效应",能够光顺阀口主流束颗粒轨迹,迫使阀腔漩涡区域后移并远离工作区,其工作面基本无冲蚀.  相似文献   

8.
液固多相流冲蚀磨损会严重影响管道的使用寿命。以某输油管线设计为研究对象,运用Fluent软件中的Mixture-DPM双向耦合模型研究低浓度颗粒的油水多相流管道流场变化,分析集输管线整体冲蚀速率分布,得到了不同管件冲蚀磨损较严重的区域。为了进一步研究冲蚀磨损的影响因素,选取3种不同的入口流速及原油含水率进行综合对比分析,结果表明:不同管件的冲蚀磨损区域各不相同;90°弯管磨损区域主要集中在外拱壁面,三通管磨损区域主要位于下支管右壁面,渐缩管磨损区域主要位于喉部区域及出口处,盲三通在盲端1/3处形成小型旋涡,且磨损区域主要位于盲端与下支管相贯线区域以及下支管右壁面处;冲蚀速率随入口流速的增加呈指数型增长,指数系数为1.89;随原油含水率增加,冲蚀速率呈倒"U"形变化,当含水率为20%时,冲蚀速率达到最大值。  相似文献   

9.
横管跑道型结构炉管是煤焦油加热炉中的重要部件,煤焦油中携带的固体颗粒会对弯头管壁造成冲蚀,研究在不同条件下弯头管道处的冲蚀规律对安全生产具有重要意义。利用FLUENT软件模拟炉管弯管处液固两相流流动规律,分析在不同质量流、流速、温度、颗粒直径下固体颗粒对管壁的冲蚀规律。结果表明,弯管整体部分会产生断断续续区域性的冲蚀,其中最严重的部分发生在弯管中间处。流体的颗粒质量流量、速度、温度及颗粒直径的增大均会增大管壁处的最大冲蚀率,质量流量、流体速度与冲蚀速率之间呈二次函数关系,质量流量增加到0.11 kg/s后会对冲蚀率产生一定的抑制作用;流体速度对冲蚀率影响最大。流体的温度在20~50℃内,温度升高改变流体黏度系数成为冲蚀率增加的主要因素,在50~60℃,颗粒动能与流体黏度的耦合作用是导致最大冲蚀率减小的主要因素。当颗粒直径在50~200μm,冲蚀速率随着颗粒直径增大增加较慢。研究结果对于预测加热炉炉管冲蚀情况、预测最大冲蚀位置、适当增加炉管壁厚、提高炉管使用年限具有重要的参考意义。  相似文献   

10.
气顶油藏在开发过程中经常遇到气窜问题,研究气窜对改善油气田开发效果具有重要意义.凝析气顶油藏气窜特征与常规气顶气窜不同,凝析气顶气窜不仅表现为气油比和累产气量升高,其采出油组成和密度等特征都发生了较大变化,因此在气窜量分析和计算时要采用不同的方法.在常规气顶气窜量计算法的基础上,推导了适用于凝析气顶气窜量的气油比动态计算方法.通过实例进行了凝析气顶气窜量的计算.并与密度动态法比较,验证了该法的可靠性.  相似文献   

11.
针对高含水原油集输管道内腐蚀穿孔事故日趋严重的工程实际问题,对高含水原油集输管道内腐蚀高风险点预测及内腐蚀缺陷监测方法进行了综合研究。基于原油集输管道管内介质的液滴携带机理,给出了该类管道内腐蚀高风险点的预测和判定方法;基于场指纹腐蚀监测原理,研究了代表腐蚀缺陷深度的指纹系数的空间分布规律,给出了其与管道壁厚减薄量的对应关系曲线,建立了高含水原油集输管道内腐蚀状况的评估模型。研究可为高含水原油集输管道科学管理及保障原油集输管道安全运营提供技术支撑。  相似文献   

12.
油气储运理论与技术进展   总被引:1,自引:0,他引:1  
经过60年的发展,中国石油大学油气储运工程学科形成了油气长距离管道输送、多相管流与油气集输、油气储运设施安全与施工等特色鲜明的优势研究方向。近10多年来,伴随着中国油气储运行业的空前大发展以及随之而来的一系列技术挑战,本学科在这些研究领域开展了较系统深入的研究,在易凝高黏原油流变性与管道输送、天然气及成品油管道输送、油气水多相流动、油气水分离、多相混输系统流动保障、流动减阻机制、油气管道与集输系统节能、管道强度设计与安全评价、油气储运设施完整性管理、油气管道与地下储库施工等方面取得了一大批重要成果。较系统地总结了这些成果。总结本学科60年发展的经验,面向本领域重大工程技术问题,持之以恒地开展系统且深入的基础研究,仍是学科今后发展必须坚持的基本战略方针。  相似文献   

13.
天然气集输管网仿真技术研究   总被引:3,自引:0,他引:3  
通过建立天然气管网管道元件以及非管元件仿真数学模型,采用隐式差分法将偏微分模型转换为有限差分方程,并采用牛顿-拉夫逊法求解模型,最后对某天然气管网进行了仿真分析,结果表明:各管道中的压力没有超过管道允许压力,部分管段压降、流量很小,增输潜力巨大,因此,可以调整输气方案,适当增加输气量.  相似文献   

14.
为了改变页岩气田生产初期和后期的流体压力、产量波动较大对集输管网生产过程中工况变化适应性较差的问题。基于长宁某区块页岩气田集输管网的运行现状和工况特点,针对管网布局、输送工艺和增压工艺三个方面,分别择优选取适应性评价指标进行适应性分析评价。结果表明:长宁区块页岩气田集输管网的总体可靠度较高,增压工艺处理规模较大但增压效率较低。在滚动式组合增压模式最大设计规模下,尽量提高增压比。评价结果旨在为长宁区块页岩气田集输管网安全、平稳运行提供技术支持。  相似文献   

15.
在CO2/H2S共存条件下集输管道中,管道发生腐蚀的可能性急剧增大,因此集输管道的选材至关重要。若选择管材级别较低,则会严重影响管道的正常生产;若管材级别较高,会引起经济成本的浪费。为了使集输管道在CO2/H2S共存条件下选材更加合理。在CO2/H2S共存腐蚀速率预测模型的基础上,提出了一种新的集输管道选材方法,新方法的步骤为:计算材质的均匀腐蚀速率,腐蚀速率应满足NACE 标准中腐蚀速率的控制值(小于0.076mm/a),结合管道的设计寿命、剩余强度和经济性评价,确定在CO2/H2S共存体系下集输管道的材质。以某油田集输管道为示例,根据新方法选择的材质与实验得到的管材结果一致,验证了新方法的准确性。集输管道选材新方法在保证集输管道安全运行的前提下,能够有效降低管材质选择的成本,有利于保证集输管道的安全性和经济性。  相似文献   

16.
考虑到安全、天然气组分等因素,越来越多的高含硫气田采用了湿气集输工艺,在山地丘陵地区管线低洼处势必会产生积液。通过理论分析提出了两种非介入式管线积液检测方法。通过室内实验研究证明了两种检测方法的可靠性,最后将这两种积液检测方法应用到了普光气田现场。结果表明:两种检测方法都可以准确地检测到管线内的气液界面,检测结果与实际液位高度相对误差均在±10%以内,并且两种方法操作简单,不破坏管道结构,不受管内运行参数的影响,可以用来指导现场工艺运行,为管线清管提供依据。  相似文献   

17.
建立了高含硫湿气田增压集输模式的数值模型.采用热-力耦合计算方法,模拟分析了总站压力对段塞流风险、管段流速和管输能力的影响.研究结果表明:增压集输模式模型的可靠性误差均维持在9%以内;当气井配产不变时,总站压力越低,管道持液率越小.在后期开采中,管网运行压力的降低有利于避免段塞流的形成;当总站压力为5.0 MPa时,1...  相似文献   

18.
在海洋油气集输过程中,管路中易形成强烈段塞流,从而导致管线的机械损坏、加剧管壁腐蚀等危害。为了消除这种危害,对海洋油气集输系统中带有水平管的下倾管-立管系统强烈段塞流压力波动特性进行研究。结果表明,安装有水平管段的这种管路系统与没有安装水平管段的系统相比,其压力波动有两个明显的区别:一是立管中部测压点压力波动曲线在喷发时刻产生急剧上升的压力尖端,折算液速对压力尖端的出现有很大的影响,而折算气速变化对压力突增尖端的影响不大;二是在低的折算液速条件下,下倾管底部测压点最高压力大于其他所有测压点的压力,随折算液速的增大,该点的压力变小,达到正常值。  相似文献   

19.
由于地形与成本制约,陕北油田X联合站接收多层系来液,不同层位地层水不相配伍导致联合站内管线结垢严重、阻垢困难、成本攀升等一系列问题,严重影响联合站的正常运转。本文通过对采出水进行水质分析与垢样的组成分析,进一步通过配伍性实验明确不同层位采出水配伍性、结垢物成分和结垢量,通过化学阻垢与模拟计算定点机械清垢相结合的复合式清垢工艺有针对性地解决了现场混层集输的实际问题。结果表明:不同层位采出液中CO32-、SO42-、Ca2+、Mg2+、Ba2+、Sr2+成垢离子含量均较高,延8、延10层位与长2、长6层位地层不配伍并具有较强的结垢趋势;100mg/L的YS-1阻垢剂可有效改变晶体结构,使其不易黏附在管壁上,通过FLUENT软件模拟计算选择X联合站流速最慢、结垢物最易沉积管段安装清管器将松散的垢进行定期清除,解决了由于多层位采出液集输管线相遇的严重结垢而产生的频繁堵塞问题,在低成本、高效开发中、老油田具有广阔的应用前景。  相似文献   

20.
随着油田进入高含水期,原油流动特性发生了较大变化,而传统的集输工艺流程能耗较高,为了降低集输能耗,急需对管道低温集输温度界限进行研究。因此,在华北油田测试区块建立了可视化试验装置,研究实际生产过程中高含水原油低温集输特性和温度界限。研究结果表明,随着集油管线温度的降低,存在3个压降变化的转折点,其中压降增加率突变点和压降峰值点所对应的特征温度可作为低温集输的温度界限,据此拟合得到了满足实际生产需求的黏壁温度回归模型。基于所得模型,针对不同工况下低温集输的温度界限进行了预测,并据此创建了低温集输可行性的图示判断工具。所得结果对高含水期油田实际生产中低温集输的可行性判断及其安全运行管理具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号