首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

2.
Microarc oxidation(MAO)electrolysis plasma deposition was used to prepare Al_2O_3coatings on Ti-45Al-8.5 Nb alloys to improve high temperature oxidation resistance.The surface and cross-section morphologies before and after high-temperature oxidation,the chemical composition,and the phase identification of the coatings were investigated by scanning electron microscopy(SEM),electron probe microanalyses(EPMA),and X-ray diffraction(XRD).The results show that Al_2O_3coatings with a thickness of approximately 8μm can be obtained on the Ti-45Al-8.5 Nb alloys by MAO for 600 s.The samples with the Al_2O_3coatings exhibited better high-temperature oxidation resistance.A minimal weight gain of only 0.396 g/m~2after 100 h oxidation at 900°C was observed for the coatings formed with a deposition voltage of 400 V and using a duty cycle of 3%.The deposition mechanism of the Al_2O_3coatings and the effect of the MAO parameters are also described.  相似文献   

3.
Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr2O4 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) analyses show that NiCr2O4 spinel has been fabricated with the space group Fd3m. Scanning electron microscope (SEM) photographs show that the coating consists of a laminated structure with homogeneous grains and high porosity because of the unique feature of plasma spraying. The emissivity measurement and Fourier transformation infrared radiation (FT-IR) spectra show that NiCr2O4 has a high emissivity of about 0.91 because of its special spinel structure. APS is a suitable method to produce high emissivity coatings.  相似文献   

4.
NiCrAlY bond coat was prepared by HVOF (high-velocity oxygen fuel) spray on nickel-based superalloy. Surface treatments like grit-blasting, shot-peening and vacuum treatment methods were carried out in order to study the effects of surface modification on thermal cycling lifetime of TBCs. The surface-modified TBCs exhibited better thermal shock resistance. Failure of TBCs with the as-sprayed bond coat occurred within the top coat and at the interface between spinels and the top coat, while that of after shot-peening, grit-blasting and vacuum treatment occurred mainly within the top coat. TGO (thermally grown oxide) formed on as-sprayed bond coat was composed of a Ni(Al,Cr)2O4 spinels outer layer and a Al2O3 inner layer. But, a continuous and uniform Al2O3 formed after surface modification . Formation of the mixed oxides (spinels) on the as-sprayed bond coat accelerated the failure of TBCs.  相似文献   

5.
研究了热浸镀纯Zn和Zn-0.05%Ni-0.05%V镀层在350℃的恒温氧化行为。采用SEM、OM、EDS、XRD等分析了镀层氧化前后的表面、截面形貌及相组成。结果表明,Zn-0.05%Ni-0.05%V镀层可以有效地抑制Fe-Zn反应和ζ相层的超厚生长。经氧化150h后,纯Zn和Zn-0.05%Ni-0.05%V表层由ZnO和FeZn8.87两相组成。各镀层氧化动力学曲线主要为抛物线类型。在氧化过程中,纯Zn镀层形成大量的孔洞,氧化增重速率快;而Zn-0.05%Ni-0.05%V镀层组织较致密,具有更优的抗氧化性能。  相似文献   

6.
Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200°C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.  相似文献   

7.
In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900°C in static air was investigated. The results indicate that the composite samples present a much lower oxidation mass gain. Under long-time intensive oxidation exposure, the formed oxide scale is multi-layer. The formation of the outer TiO2 layer is fine and dense, the internal Al2O3 scale has good adhesiveness with the outer TiO2 scale, and the TiO2+Al2O3 mixed layer forming the protective oxide scale is favorable for the improvement of oxidation resistance. It is believed that the incorporation of Al2O3 particulates into the metal matrix decreases the coefficient of thermal expansion of the substrate, and forms a local three-dimensional network structure that can hold the oxide scale. The formation of the oxide scale with finer particle size, stronger adherence, less micro-defects and slower growth rate can contribute to the improvement of oxidation resistance. Nb element plays an important role in reducing the internal oxidation action of the materials, restraining the growth of TiO2 crystals and promoting the stable formation of the Al2O3-riched layer, which is beneficial to improve the oxidation properties.  相似文献   

8.
An environmentally clean aluminium-based conversion coating on AZ91D magnesium alloy was studied in aluminium nitrate solutions. The morphology, composition, structure, and formation mechanism of the coating were investigated in detail using scanning electron microscopy/energy dispersion spectrometry, X-ray diffraction, transmission electron microscopy, and electrochemical corrosion tests. The results show that the conversion coating is composed of magnesium, aluminium, and oxygen, and shows an amorphous structure. In the initial stage of coating formation, the grain-like nucleus is composed of Al10O15·xH2O, (Al2O3)5.333, Al2O3, AlO(OH), MgAl2O4, (Mg0.88Al0.12)(Al0.94Mg0.06)2O4, and (Mg0.68Al0.32)(Al0.84Mg0.16)2O4. The conversion coating formed in the 0.01 mol/L aluminium nitrate solution for 15 min can improve the corrosion resistance of the magnesium alloy greatly. The discussion reveals that the possible formation mechanism for the aluminium-based conversion coating is the reduction reaction on micro-cathodic sites due to the electrochemically heterogeneous magnesium alloy substrate.  相似文献   

9.
By mixing preheated high-aluminum bronze powders with different amounts of Al2O3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and the bonding strength between the coating and the substrate were tested with a HV-1000 microhardness tester and a mechanical universal testing machine. The surface microstructure, cross-section and tensile fracture surface of the coating were observed with a scanning electron microscope (SEM). Correspondingly, the influences of the preheat treatment temperature of the bronze powder and the Al2O3 content on the coating performance were investigated. The results indicate that the hardness of bronze powders decreased and the coating deposition rate increased after the preheating treatment of the bronze powder. The Al2O3 content in the mixed powders contributed to the deformation of bronze powders during the spraying process. This trend resulted in varied performance of the coating.  相似文献   

10.
The oxidation behavior of a nickel-based superalloy at 1000℃ in air was investigated through X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy analysis. A series of oxides, including external oxide scales (Cr2O3, (TiO2 + MnCr2O4)) and internal oxides (Al2O3,TiN), were formed on the surface or sub-surface of the substrate at 1000℃ in experimental still air. The oxidation resistance of the alloy was dependent on the stability of the surface oxide layer. The continuity and density of the protective Cr2O3 scale were affected by minor alloying elements such as Ti and Mn. The outermost oxide scale was composed of TiO2 rutile and MnCr2O4 spinel, and the growth of TiO2 particles was controlled by the outer diffusion of Ti ions through the pre-existing oxide layer. Severe internal oxidation occurred beneath the external oxide scale, consuming Al and Ti of the strength phase γ' (Ni3(Al,Ti)) and thereby severely deteriorating the surface mechanical properties. The depth of the internal oxidation region was approximately 35 μm after exposure to experimental air at 1000℃ for 80 h.  相似文献   

11.
Ceramic coatings with aluminum titanuate (Al2TiO5) were prepared on Ti–6Al–4V alloy using pulsed bi-polar Micro-arc Oxidation (MAO). The micromorphology and phase composition of the micro-arc-oxidition ceramic coatings on the titanium alloy were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) respectively. The results revealed that the distinct discharge channels and pores on the surface of the micro-arc-oxidition coatings appeared, and these channels were connected in the molten state. The electrolyte concentration was inversely proportional to the coating hardness; additionally, the coating prepared with sodium aluminate and sodium hypophosphite concentrations of 4 ?g/L and 0.5 ?g/L, respectively, was the most refined after high-temperature sintering, and it was demonstrated to better prevent oxidation. Increasing the electrolyte concentration coincided with fluctuating coating thermal shock resistance. The thermal shock resistance of the coating respectively prepared with sodium aluminate, and the sodium hypophosphite concentrations of 4 ?g/L and 0.5 ?g/L was the highest. Additionally, the high-concentration coatings performed significantly better than the low-concentration coatings. The oxidation resistance of the coating samples was also significantly higher than that of the TC4 titanium alloy substrate. The adhesion strength between the coatings and the substrate with and without the sealing treatment was measured by tensile tests. Then, the high-temperature oxidation performance of the coating samples with and without the sealing treatment was investigated by conducting a high-temperature oxidation experiment at a calcinating temperature of 500 ?°C. The results indicate that the adhesion strength between the coatings and substrate was high for the as-prepared and sealed micro-arc oxidation samples regardless of whether they were calcined. The high-temperature oxidation mass increase curves for the sealed and unsealed coating samples calcined at 500 ?°C for 500 ?h revealed that the high-temperature-oxidation-induced mass increase of the coating samples sealed with a sodium silicate solution was much lower than that of the titanium alloy substrate. Thus, the sealing treatment significantly improved the high-temperature oxidation resistance of the TC4 titanium alloy. Lastly, the high-temperature oxidation behavior at 500 ?°C was analyzed and discussed.  相似文献   

12.
The conductivity of MnCo2O4 spinel, the best route to form the MnCo2O4 protective coating applied by the sol-gel process, and its effect on the intermediate temperature oxidation behavior of SUS 430 alloy, a typical material for the interconnect of solid oxide fuel cell (SOFC), was investigated. The phase structure and surface morphology of the coating and surface oxides were characterized by XRD, SEM and EDS; the “4-probe” method was employed to determine the conductivity of MnCo2O4 spinel and the area specific resistance (ASR) of the surface oxides. The conductivity of MnCo2O4 spinel is excellent, which is 2 orders of magnitude better than that of MnCr2O4 spinel. Long-term thermally cyclic oxidation at 750°C in SOFC cathode atmosphere and ASR measurement have shown that calcined in reducing atmosphere followed by pre-oxidation in the air is the best technique for forming the MnCo2O4 protective coating, which enhances the oxidation resistance, and improves the electrical conductivity and adherence of coated SUS 430 alloy significantly. As a result, the MnCo2O4 spinel is the most potential candidate for SOFC metallic interconnect protective coating application.  相似文献   

13.
TiAlSiN hard coatings were synthesized on high-speed steel using an arc ion enhanced magnetic sputtering hybrid system.The microstructure and hardness of the coatings at different annealing temperatures were explored by means of XRD,TEM,EDAX and Vickers indentation.The as-deposited TiAlSiN coatings were confirmed to be amorphous due to high depositing rate and low deposition temperature during the film growth.The transformation from amorphous to nanocomposites of nano-crystallites and amorphousness were observed after the annealing treatment,the microstructure of TiAlSiN coatings annealed at 800°C and 1000°C were consisted of crystalline hcp-AlN,fcc-TiN and amorphous phase,however,the coatings were only consisted of fcc-TiN and amorphous phase when annealing at 1100°C and 1200°C.Meanwhile,the formation of Al2O3 was detected on the coating surface after annealing at 1200°C and it indicated the excellent oxidation resistance of the TiAlSiN coatings under the present experimental conditions.Furthermore,the average grain size of the TiAlSiN coatings after high temperature annealing even at 1200°C was less than 30 nm and the size increased with the increasing temperature.However,the hardness of the so-deposited coatings with HV0.2N=3300 dramatically decreased with the increase of temperature and reached nearly to the hardness of TiN coatings with HV0.2N=2300.  相似文献   

14.
In this paper, a Ni-W-La2O3 composite coating was prepared by the electrodeposition method. Microhardness tester and environmental scanning electron microscope equipped energy dispersive spectroscopy were employed to investigate the microhardness and the surface morphology of the composite coatings respectively, and the high temperature friction behavior and corrosion resistance of the coatings against molten glass were investigated by using a high temperature tribometer. The results show that La2O3 can refine the microstructure effectively, and make the element distribution uniform, which leads to the increase of average microhardness. La2O3 particulates can reduce the friction coefficient between the composite coating and glass during the sliding process at about 973 K largely, and the corrosion resistance of the La2O3 added Ni-W coatings is effectively improved compared with that of the non-added one, furthermore the mechanism of friction-reducing and anti-corrosion is also discussed.  相似文献   

15.
Ceramic coating electric-deposited by high-energy pulse   总被引:1,自引:0,他引:1  
A novel method to prepare ceramic coatings has been developed by making use of plasma energy produced from the pulsed discharge between electric conductor and aqueous electrolyte. A ZrO2-8%Y2O3, coating was obtained by this method, which had excellent adhesion with substrate, smooth surface and good resistance to high temperature oxidation.  相似文献   

16.
In order to identify suitable halide activators and pack compositions for codepositing Cr and Si to form diffusion coatings on Nb-base in situ composites by the pack cementation process, thermochemical calculation was taken to analyze the vapor pressure of halide species generated at high temperatures. NH4Cl, NaF and CrCl3·6H2O were selected as the halide salts. The results of thermochemical calculations suggested that the pack powder mixtures, which contained Cr, Si, halide salts and Al2O3, may be activated by NH4Cl and NaF. According to the thermochemical calculations, the pack powder mixture of 12Cr-6Si-5NH4Cl-77Al2O3 (wt%) activated by NH4Cl was formulated and coating deposition experiments were carried out at 1200 and 1300℃. With adequate control of pack compositions and deposition conditions, it was found that codeposition of Cr and Si could indeed be achieved at these temperatures. The coating has a three-layer structure, of which was mainly composed of Cr2(Nb,X) (X represents Ti and Hf elements), Nb5Si3 and (Nb,Cr)3Si. Then the kinetics of coating growth process affected by temperature was studied. The experimental results of the oxidation showed that the coating can efficiently prevent substrate from oxidizing.  相似文献   

17.
The effect of Ge modification on the oxidation of Nb Si2 was performed by using the first-principles method based on Density Functional Theory(DFT). The O2 molecule absorption configurations on the ideal NbSi2(001) surface with and without Ge substitution was constructed to study the initial oxidation behavior as well as oxygen diffusion in the bulk Nb Si2 cell in the late oxidation stage. Ge substitution was found to decrease the absorption energy of ...  相似文献   

18.
电弧离子镀制备NiCrAlY涂层及其阻尼性能   总被引:1,自引:0,他引:1  
采用电弧离子镀的方式在不锈钢基片上制备了NiCrAlY涂层.对涂层样品进行了物相分析,表面形貌观察,测定微区化学成分,储能模量和损耗模量.结果表明,利用电弧离子镀的方法可以在不锈钢基底上获得均匀的NiCrAlY涂层.制备过程中的弧电流变化对涂层的表面形貌和化学成分有一定的影响,对涂层的物相结构影响不大.为研究NiCrAlY涂层的阻尼特性,通过储能模量和损耗模量的测试结果得到涂层样品的阻尼性能,结果表明NiCrAlY涂层能明显地提高基底的阻尼性能.  相似文献   

19.
A novel surface technique has been developed to produce ZrO2 and ZrO2-Y2O3 coatings on the surface of alloys by using double pulsed plasma arc to react with a solution film containing nano-oxide particles. These coatings exhibit smooth surface and excellent adhesion with substrate. The morphologies of the ceramic coatings and phases were analyzed. It was shown that the oxidation resistance of 18-8 stainless steel was markedly improved by applying ZrO2 and ZrO2-Y2O3 coatings.  相似文献   

20.
To explore and study the Fe-Al system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250°C were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructure of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250°C. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250°C. The oxidation mechanism at 1250°C is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号