共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
具有极大秩幂零根基的完备Lie代数 总被引:1,自引:0,他引:1
用半单Lie代数表示论方法实现了具有极大秩幂零根基的完备Lie代数,完全刻划了这类完备Lie代数的结构,给出了这类轩Lie代数的同构定理,作为推论,实际上给出了具有交换幂零根基的完备Lie代数的分类,最后证明了极大秩害虫零Le代数不能作为代数的要基。 相似文献
3.
幂零根基为Heisenberg代数的完备Lie代数的结构和实现 总被引:1,自引:0,他引:1
一个Lie代数称为完备Lie代数如果它的中心为零且所有的导子都是内导子。完备Lie代数的定义是Jacobson在 1962年给出的,近些年完备 Lie代数理论有了较大发展(部分研究可参见文献[2~5]),Jiang和Meng文给出了复数域C上所有幂零根基可换的完备Lie代数的结构和具体实现,文献[5]给出了复数域C上有限维Heisenberg代数的导子代数和全形,证明了此导子代数和全形的导子代数均为单完备Lie代数.本文讨论了复数域C上幂零根基为Heisenberg代数的有限维完备Lie代数的性质,给出了这一类完备Lie代数的同构定理,证明了一个以 Heisenberg代数为幂零根基的完备Lie代数可以分解为一个以 Heisenberg代数或一维可换Lie代数为幂零根基的可解完备Lie代数和另一个以Heisenberg代数或一维可换Lie代数为幂零根基的完备Lie代数的和,给出了所有这两类完备Lie代数的结构和具体实现.因而C上所有以Heisenberg代数为幂零根基的有限维完备Lie代数的结构和具体构造全部被研究清楚. 本文中所讨论的Lie代数均为复数城C上的有限维Lie代数. 相似文献
4.
5.
设G是有限群,π是若干素数组成的集合.若G含有Hallπ-子群,则称G为E_π-群;若G是E_π-群,并且其所有Hallπ-子群均共轭,则称G为C_π-群;若G是C_π-群,并且G的任意π-子群均含在某Hall π-子群,则称G为D_π-群.此外,如果G含有幂零Hallπ-子群,称 G为E_π~n-群.有例子表明:E_π~n-群的子群不必为E_π~n-群,如G=PSL(2,31),π={3,5},这时G为E_π~n-群,但G含有同构于A_5的子群H,而H不是E_π~n-群. 相似文献
6.
设G是n维半单,连通紧Lie群;g是G的Lie代数;T是G的l维极大环群;Δ~ 是全体正根,正根个数为m;(·,·)是g上的伴随表示下不变的正定内积,于是|X|=(X,X)~(1/2)是g上的范数,从紧Lie群的不变Riemman度量可定义函数f(x)的连续模ω(f,t)以及Lipschitz函数类Lipα,0< 相似文献
7.
设X,Y是复Banach空间。对A∈B(X)和B∈B(Y),广义导算子定义如下:最近张少华对Hilbert空间算子解决了“在什么条件下具有闭值域?”的问题。对Banach空间算子如何呢?这里我们对幂零算子的情形给出一个部分的回答。 相似文献
8.
9.
本文将研究乘积Heisenberg群H~n,H~n=H_1×…×H_1是n个三维Heisenberg群的直积.H~n中的元素记为(z,t),这里z∈C~n,t∈R~n,有时我们也使用坐标(x,y,t)∈R~(2N)×R~n,这里z=x+iy.H~n的乘法定义为:对(z,t).(ζ,s)∈H~n(z,t)(ζ,s)=(z+ζ,τ),其中τ_j=t_j+s_j+1/2 Imz_j(?)_j(1≤j≤n).H_1是Ⅰ型群,H~n的所有不可约酉表示都可以通过取H_1上不可约酉表示的张量积得到. 相似文献
10.
p-可解群的p-正则类的长和p-秩 总被引:1,自引:0,他引:1
本文目的是建立有限p-可解群G的p-正则类的长的p-部分和G的p-秩及p-长的关系.文中所说的群均指有限群.p总代表素数.G_p表示群G的Sylow p-子群.r_p(G)和 l_p(G)分别表示p-可解群G的p-秩和p-长.对任一个群G及X∈K≤G,Cl_k(x)表示K的含X的共轭类.Con(G):={C|C是G的共轭类}.对于C∈Con(G),|C|叫做共轭类C的长.G的p′-元叫p-正则元,p-正则元的共轭类叫做p-正则类.对于整数n,如果n=p~am,p(?)m,那么我们写ω_p(n)=a.对于群G,我们定义rc_p(G)=max{ω_p(|C|)C∈Con(G)且C是p-正则的}. 相似文献
11.
设G是n维半单,连通紧Lie群,g是G的Lie代数,T是G的l维极大环群,H为G的Cartan子代数,△~+表示H上全体正根,(,)是g上的伴随表示不变正定内积,d(x,y)是G上的不变Riemann度量,|W|表示G 相似文献
12.
本文通过引进拟置换概念,并利用陆启铿和Bekya的结果,首先给出广义C—R条件,然后讨论了复Clifford分析中一类二阶偏微分方程于Lie球双曲空间上的两个边值问题。 相似文献
13.
本文利用群Fourier变换建立了Heisenberg群H_n上一类偏微分方程初值问题的适定性定理。在此基础上,得到了算子的基本解,其中是CR结构在一般Hermite度量下的(广义)Kohn-Laplace算子。 相似文献
14.
1 算子在文献[1]中,我们在Banach空间L~p(R~n)上定义算子如下: 这里W~(1·p)={u,u ∈L~p(R~n),D_ju∈L~p(R~n),1≤j≤n}是Sobolev空间。其中D_ju是函数u(x)在分布意义下的第j个偏导数,即 相似文献
15.
定义1 设(M,g)为一个伪Riemann流形,I是M上的仿复结构。令■(M)为M上光滑向量场组成的Lie代数。如果等式 g(IX,Y)+g(X,IY)=0,X,Y∈x(M) (1)成立,则g叫做仿Hermite度量。在这种情况下,我们可以定义二次形式 相似文献
16.
17.
18.
一、引言 在实解析流形R~n×R~n×R上引进下列群运算:(x,y,t)·(x′,y′,t′)=(x+x,y+y,t+t′+2(y·x′—x·y′)),(?)(x,y,t)和(x′,y′,t′)∈R~n×R~n×R,这样就得到了一个2n+1维单连通幂零Lie群,称之为Heisenberg群,记作H_n。该Lie群有很重要的物理、几何和分析学背景。关于该群的性质及相关概念,请参看文献[1,2]。 相似文献
19.
对砂岩组构的测量和研究,可为古水流、盆地分析及古环境再造提供许多信息和依据。多年来,沉积岩工作者在这一方面已进行了大量工作,提出了许多组构测量的理论和方法,但迄今为止,这些方法仍然未能令人满意。常用的是在定向薄片上测量砂粒的视产状,但这种方法不能确定其空间方位。另一些方法采用矿物的c轴、岩石的介电性、声波、吸水法来代替或推断砂岩组构。这些方法虽然有时可以获得较满意的效果,但均为间接推测,其效果并不 相似文献