共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterizing the patterns of genetic variation in an organism provides fundamental insight into the evolutionary history of the organism and defines the scope and nature of studies that must be designed to correlate genotype to phenotype. Given the pre-eminent role of the inbred mouse in biomedical research, considerable effort has been undertaken in recent years to describe more fully the nature and amount of genetic variation among the numerous strains of mice that are in widest use. Here, we discuss recent studies that have contributed to an emerging understanding of the unique variation patterns found in inbred strains of mice and how they have arisen through a combination of natural evolution and human-directed breeding. These preliminary results have ramifications for genetic research into complex biomedical traits and are the basis for the development of future variation resources. 相似文献
2.
Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner 总被引:11,自引:0,他引:11
Festenstein R Sharghi-Namini S Fox M Roderick K Tolaini M Norton T Saveliev A Kioussis D Singh P 《Nature genetics》1999,23(4):457-461
Locus control regions (LCRs) are gene regulatory elements in mammals that can overcome the highly repressive effects normally associated with heterochromatic transgene locations (for example the centromere) in mice. Deletion of essential LCR sequences renders the cognate gene susceptible to this form of repression, so a proportion of the cells from transgenic mice that would normally express the transgene are silenced-a phenomenon known as position effect variegation (PEV). We show here that PEV can also occur when the transgene is non-centromeric and that the extent of variegation can be developmentally regulated. Furthermore, by overexpressing a mammalian homologue (M31) of Drosophila melanogaster heterochromatin protein 1 (HP1; refs 7,8) in transgenic mouse lines that exhibit PEV, it is possible to modify the proportion of cells that silence the transgene in a dose-dependent manner. Thus, we show M31 overexpression to have two contrasting effects which are dependent on chromosomal context: (i) it enhanced PEV in those lines with centromeric or pericentromeric transgene locations; and (ii) it suppressed PEV when the transgene was non-centromeric. Our results indicate that components or modifiers of heterochromatin may have a chromosomal-context-dependent role in gene silencing and activation decisions in mammals. 相似文献
3.
Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans
Hillebrandt S Wasmuth HE Weiskirchen R Hellerbrand C Keppeler H Werth A Schirin-Sokhan R Wilkens G Geier A Lorenzen J Köhl J Gressner AM Matern S Lammert F 《Nature genetics》2005,37(8):835-843
Fibrogenesis or scarring of the liver is a common consequence of all chronic liver diseases. Here we refine a quantitative trait locus that confers susceptibility to hepatic fibrosis by in silico mapping and show, using congenic mice and transgenesis with recombined artificial chromosomes, that the gene Hc (encoding complement factor C5) underlies this locus. Small molecule inhibitors of the C5a receptor had antifibrotic effects in vivo, and common haplotype-tagging polymorphisms of the human gene C5 were associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse quantitative trait gene led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that C5 has a causal role in fibrogenesis across species. 相似文献
4.
Aulchenko YS Hoppenbrouwers IA Ramagopalan SV Broer L Jafari N Hillert J Link J Lundström W Greiner E Dessa Sadovnick A Goossens D Van Broeckhoven C Del-Favero J Ebers GC Oostra BA van Duijn CM Hintzen RQ 《Nature genetics》2008,40(12):1402-1403
The few loci associated with multiple sclerosis (MS) are all related to immune function. We report a GWA study identifying a new locus replicated in 2,679 cases and 3,125 controls. An rs10492972[C] variant located in the KIF1B gene was associated with MS with an odds ratio of 1.35 (P = 2.5 x 10(-10)). KIF1B is a neuronally expressed gene plausibly implicated in the irreversible axonal loss characterizing MS in the long term. 相似文献
5.
Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile 总被引:1,自引:0,他引:1
Kilpeläinen TO Zillikens MC Stančákova A Finucane FM Ried JS Langenberg C Zhang W Beckmann JS Luan J Vandenput L Styrkarsdottir U Zhou Y Smith AV Zhao JH Amin N Vedantam S Shin SY Haritunians T Fu M Feitosa MF Kumari M Halldorsson BV Tikkanen E Mangino M Hayward C Song C Arnold AM Aulchenko YS Oostra BA Campbell H Cupples LA Davis KE Döring A Eiriksdottir G Estrada K Fernández-Real JM Garcia M Gieger C Glazer NL Guiducci C Hofman A Humphries SE Isomaa B Jacobs LC Jula A Karasik D Karlsson MK 《Nature genetics》2011,43(8):753-760
Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ~2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance. 相似文献
6.
Transmission ratio distortion in the mouse is caused by several t-complex distorters (Tcds) acting in trans on the t-complex responder (Tcr). Tcds additively affect the flagellar movement of all spermatozoa derived from t/+ males; sperm carrying Tcr are rescued, resulting in an advantage for t sperm in fertilization. Here we show that Tagap1, a GTPase-activating protein, can act as a distorter. Tagap1 maps to the Tcd1 interval and has four t loci, which encode altered proteins including a C-terminally truncated form. Overexpression of wild-type Tagap1 in sperm cells phenocopied Tcd function, whereas a loss-of-function Tagap1 allele reduced the transmission rate of the t6 haplotype. The combined data strongly suggest that the t loci of Tagap1 produce Tcd1a. Our results unravel the molecular nature of a Tcd and demonstrate the importance of small G proteins in transmission ratio distortion in the mouse. 相似文献
7.
Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice 总被引:23,自引:0,他引:23
LaVaute T Smith S Cooperman S Iwai K Land W Meyron-Holtz E Drake SK Miller G Abu-Asab M Tsokos M Switzer R Grinberg A Love P Tresser N Rouault TA 《Nature genetics》2001,27(2):209-214
8.
Females express mate preferences for genetically dissimilar males, especially with respect to the major histocompatibility complex, MHC, and for males whose sexually selected signals indicate high genetic quality. The balance of selection pressure on each trait will depend on how females weight these desirable qualities under different conditions, but this has not been tested empirically. Here we show in mice that although MHC dissimilarity and a 'good genes' indicator (investment in scent-marking) both have a role in determining female preference, their relative influence can vary depending on the degree of variability in each trait among available males. Such interactions between condition-dependent and disassortative mate choice criteria suggest a mechanism by which female choice can contribute to maintenance of additive genetic variance in both the MHC and condition-dependent traits, even under consistent directional selection. 相似文献
9.
Yalcin B Willis-Owen SA Fullerton J Meesaq A Deacon RM Rawlins JN Copley RR Morris AP Flint J Mott R 《Nature genetics》2004,36(11):1197-1202
Here we present a strategy to determine the genetic basis of variance in complex phenotypes that arise from natural, as opposed to induced, genetic variation in mice. We show that a commercially available strain of outbred mice, MF1, can be treated as an ultrafine mosaic of standard inbred strains and accordingly used to dissect a known quantitative trait locus influencing anxiety. We also show that this locus can be subdivided into three regions, one of which contains Rgs2, which encodes a regulator of G protein signaling. We then use quantitative complementation to show that Rgs2 is a quantitative trait gene. This combined genetic and functional approach should be applicable to the analysis of any quantitative trait. 相似文献
10.
Wortmann SB Vaz FM Gardeitchik T Vissers LE Renkema GH Schuurs-Hoeijmakers JH Kulik W Lammens M Christin C Kluijtmans LA Rodenburg RJ Nijtmans LG Grünewald A Klein C Gerhold JM Kozicz T van Hasselt PM Harakalova M Kloosterman W Barić I Pronicka E Ucar SK Naess K Singhal KK Krumina Z Gilissen C van Bokhoven H Veltman JA Smeitink JA Lefeber DJ Spelbrink JN Wevers RA Morava E de Brouwer AP 《Nature genetics》2012,44(7):797-802
Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking. 相似文献
11.
Genomic imprinting is an epigenetic modification that results in expression from only one of the two parental copies of a gene. Differences in methylation between the two parental chromosomes are often observed at or near imprinted genes. Beckwith-Wiedemann syndrome (BWS), which predisposes to cancer and excessive growth, results from a disruption of imprinted gene expression in chromosome band 11p15.5. One third of individuals with BWS lose maternal-specific methylation at KvDMR1, a putative imprinting control region within intron 10 of the KCNQ1 gene, and it has been proposed that this epimutation results in aberrant imprinting and, consequently, BWS1, 2. Here we show that paternal inheritance of a deletion of KvDMR1 results in the de-repression in cis of six genes, including Cdkn1c, which encodes cyclin-dependent kinase inhibitor 1C. Furthermore, fetuses and adult mice that inherited the deletion from their fathers were 20-25% smaller than their wildtype littermates. By contrast, maternal inheritance of this deletion had no effect on imprinted gene expression or growth. Thus, the unmethylated paternal KvDMR1 allele regulates imprinted expression by silencing genes on the paternal chromosome. These findings support the hypothesis that loss of methylation in BWS patients activates the repressive function of KvDMR1 on the maternal chromosome, resulting in abnormal silencing of CDKN1C and the development of BWS. 相似文献
12.
THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia 总被引:1,自引:0,他引:1
Tran PV Haycraft CJ Besschetnova TY Turbe-Doan A Stottmann RW Herron BJ Chesebro AL Qiu H Scherz PJ Shah JV Yoder BK Beier DR 《Nature genetics》2008,40(4):403-410
Characterization of previously described intraflagellar transport (IFT) mouse mutants has led to the proposition that normal primary cilia are required for mammalian cells to respond to the sonic hedgehog (SHH) signal. Here we describe an N-ethyl-N-nitrosourea-induced mutant mouse, alien (aln), which has abnormal primary cilia and shows overactivation of the SHH pathway. The aln locus encodes a novel protein, THM1 (tetratricopeptide repeat-containing hedgehog modulator-1), which localizes to cilia. aln-mutant cilia have bulb-like structures at their tips in which IFT proteins (such as IFT88) are sequestered, characteristic of Chlamydomonas reinhardtii and Caenorhabditis elegans retrograde IFT mutants. RNA-interference knockdown of Ttc21b (which we call Thm1 and which encodes THM1) in mouse inner medullary collecting duct cells expressing an IFT88-enhanced yellow fluorescent protein fusion recapitulated the aln-mutant cilial phenotype, and live imaging of these cells revealed impaired retrograde IFT. In contrast to previously described IFT mutants, Smoothened and full-length glioblastoma (GLI) proteins localize to aln-mutant cilia. We hypothesize that the aln retrograde IFT defect causes sequestration of IFT proteins in aln-mutant cilia and leads to the overactivated SHH signaling phenotype. Specifically, the aln mutation uncouples the roles of anterograde and retrograde transport in SHH signaling, suggesting that anterograde IFT is required for GLI activation and that retrograde IFT modulates this event. 相似文献
13.
14.
15.
McGregor L Makela V Darling SM Vrontou S Chalepakis G Roberts C Smart N Rutland P Prescott N Hopkins J Bentley E Shaw A Roberts E Mueller R Jadeja S Philip N Nelson J Francannet C Perez-Aytes A Megarbane A Kerr B Wainwright B Woolf AS Winter RM Scambler PJ 《Nature genetics》2003,34(2):203-208
Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero. 相似文献
16.
Mitotic chromosome segregation is facilitated by the cohesin complex, which maintains physical connections between sister chromatids until anaphase. Meiotic cell division is considerably more complex, as cohesion must be released sequentially to facilitate orderly segregation of chromosomes at both meiosis I and meiosis II. This necessitates meiosis-specific cohesin components; recent studies in rodents suggest that these influence chromosome behavior during both cell division and meiotic prophase. To elucidate the role of the meiosis-specific cohesin SMC1beta (encoded by Smc1l2) in oogenesis, we carried out meiotic studies of female SMC1beta-deficient mice. Our results provide the first direct evidence that SMC1beta acts as a chiasma binder in mammals, stabilizing sites of exchange until anaphase. Additionally, our observations support the hypothesis that deficient cohesion is an underlying cause of human age-related aneuploidy. 相似文献
17.
Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1 总被引:6,自引:0,他引:6
Costa RM Yang T Huynh DP Pulst SM Viskochil DH Silva AJ Brannan CI 《Nature genetics》2001,27(4):399-405
Neurofibromatosis type 1 (NF1) is a commonly inherited autosomal dominant disorder. Previous studies indicated that mice homozygous for a null mutation in Nf1 exhibit mid-gestation lethality, whereas heterozygous mice have an increased predisposition to tumors and learning impairments. Here we show that mice lacking the alternatively spliced exon 23a, which modifies the GTPase-activating protein (GAP) domain of Nf1, are viable and physically normal, and do not have an increased tumor predisposition, but show specific learning impairments. Our findings have implications for the development of a treatment for the learning disabilities associated with NF1 and indicate that the GAP domain of NF1 modulates learning and memory. 相似文献
18.
Vrontou S Petrou P Meyer BI Galanopoulos VK Imai K Yanagi M Chowdhury K Scambler PJ Chalepakis G 《Nature genetics》2003,34(2):209-214
Loss of tight association between epidermis and dermis underlies several blistering disorders and is frequently caused by impaired function of extracellular matrix (ECM) proteins. Here we describe a new protein in mouse, Fras1, that is specifically detected in a linear fashion underlying the epidermis and the basal surface of other epithelia in embryos. Loss of Fras1 function results in the formation of subepidermal hemorrhagic blisters as well as unilateral or bilateral renal agenesis during mouse embryogenesis. Postnatally, homozygous Fras1 mutants have fusion of the eyelids and digits and unilateral renal agenesis or dysplasia. The defects observed in Fras1-/- mice phenocopy those of the existing bl (blebbed) mouse mutants, which have been considered a model for the human genetic disorder Fraser syndrome. We show that bl/bl homozygous embryos are devoid of Fras1 protein, consistent with the finding that Fras1 is mutated in these mice. In sum, our data suggest that perturbations in the composition of the extracellular space underlying epithelia could account for the onset of the blebbed phenotype in mouse and Fraser syndrome manifestation in human. 相似文献
19.
BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice 总被引:17,自引:0,他引:17
Baker DJ Jeganathan KB Cameron JD Thompson M Juneja S Kopecka A Kumar R Jenkins RB de Groen PC Roche P van Deursen JM 《Nature genetics》2004,36(7):744-749
Faithful segregation of replicated chromosomes is essential for maintenance of genetic stability and seems to be monitored by several mitotic checkpoints. Various components of these checkpoints have been identified in mammals, but their physiological relevance is largely unknown. Here we show that mutant mice with low levels of the spindle assembly checkpoint protein BubR1 develop progressive aneuploidy along with a variety of progeroid features, including short lifespan, cachectic dwarfism, lordokyphosis, cataracts, loss of subcutaneous fat and impaired wound healing. Graded reduction of BubR1 expression in mouse embryonic fibroblasts causes increased aneuploidy and senescence. Male and female mutant mice have defects in meiotic chromosome segregation and are infertile. Natural aging of wild-type mice is marked by decreased expression of BubR1 in multiple tissues, including testis and ovary. These results suggest a role for BubR1 in regulating aging and infertility. 相似文献
20.
DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis 总被引:14,自引:0,他引:14
Lorenz-Depiereux B Bastepe M Benet-Pagès A Amyere M Wagenstaller J Müller-Barth U Badenhoop K Kaiser SM Rittmaster RS Shlossberg AH Olivares JL Loris C Ramos FJ Glorieux F Vikkula M Jüppner H Strom TM 《Nature genetics》2006,38(11):1248-1250
Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression. 相似文献