首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U B Kaupp  P P Schnetkamp  W Junge 《Nature》1980,286(5773):638-640
The hypothesis of Yoshikami and Hagins that calcium ions act as diffusible transmitter molecules between the photochemistry of rhodopsin and the subsequent electrical events at the outer plasma membrane of rods initiated many investigations on light-stimulated calcium release in vertebrate photoreceptor cells (see refs 2, 3). Although it not seems firmly established that light has some effect on the redistribution of calcium in various disk preparations, reconstituted systems and intact rod outer segments, the physiological significance remained unclear. We previously reported a rapid, light-triggered calcium release from binding sites at the disk membrane in the presence of calcium ionophore A23187 (refs 3, 8). However, there is no evidence for rapid calcium release into the cytosol in the absence of ionophore. On fragmentation of intact rod outer segments, calcium release due to a light-requlated change of calcium binding appeared almost completely abolished. We describe here experiments with sonicated rod outer segments in which the previously observed loss of the calcium release capacity has been prevented. Calcium release in sonicated disks in the presence of A23187 kinetically follows the metarhodopsin I/metarhodopsin II transition (tau 1/2 = 10 ms, activation energy EA = 34 kcal mol-1), suggesting that calcium release is triggered by this photochemical transition.  相似文献   

2.
Membranes are essential for selectively controlling the passage of molecules in and out of cells and mediating the response of cells to their environment. Biological membranes and their associated proteins present considerable difficulties for structural analysis. Although enveloped viruses have been imaged at about 9 A resolution by cryo-electron microscopy and image reconstruction, no detailed crystallographic structure of a membrane system has been described. The structure of the bacteriophage PRD1 particle, determined by X-ray crystallography at about 4 A resolution, allows the first detailed analysis of a membrane-containing virus. The architecture of the viral capsid and its implications for virus assembly are presented in the accompanying paper. Here we show that the electron density also reveals the icosahedral lipid bilayer, beneath the protein capsid, enveloping the viral DNA. The viral membrane contains about 26,000 lipid molecules asymmetrically distributed between the membrane leaflets. The inner leaflet is composed predominantly of zwitterionic phosphatidylethanolamine molecules, facilitating a very close interaction with the viral DNA, which we estimate to be packaged to a pressure of about 45 atm, factors that are likely to be important during membrane-mediated DNA translocation into the host cell. In contrast, the outer leaflet is enriched in phosphatidylglycerol and cardiolipin, which show a marked lateral segregation within the icosahedral asymmetric unit. In addition, the lipid headgroups show a surprising degree of order.  相似文献   

3.
M Kahlert  D R Pepperberg  K P Hofmann 《Nature》1990,345(6275):537-539
Bleaching of rhodopsin markedly desensitizes the vertebrate visual system during a subsequent period of dark adaptation. Previous studies have indicated an origin of bleaching desensitization in the visual pigment itself, but have not identified the mechanism of action. A candidate for the site at which densensitization is initially expressed is the activation of transducin (formation of T*) on the rod disk membranes; this reaction directly involves rhodopsin in its photoactivated (R*) form and mediates initial amplification of the visual signal (reviewed in refs 7-9). We have analysed the effect of bleaching on the sensitivity of a flash-induced light-scattering signal known to monitor the disk-based amplifier, and which has been established as specifically monitoring transducin activation. We have recorded this signal from functioning retinal rods in situ ('ATR' signal) and find that bleaches inducing a pronounced, sustained loss in rod electrophysiological sensitivity do not alter the sensitivity of the ATR response after correction for reduced quantum catch. Our results indicate that the biochemical gain of the R*----T* transduction stage remains unchanged in the presence of bleached pigment and implicate a subsequent reaction as the first to show a sustained, bleaching-dependent gain reduction.  相似文献   

4.
Murakami M  Kouyama T 《Nature》2008,453(7193):363-367
Invertebrate phototransduction uses an inositol-1,4,5-trisphosphate signalling cascade in which photoactivated rhodopsin stimulates a G(q)-type G protein, that is, a class of G protein that stimulates membrane-bound phospholipase Cbeta. The same cascade is used by many G-protein-coupled receptors, indicating that invertebrate rhodopsin is a prototypical member. Here we report the crystal structure of squid (Todarodes pacificus) rhodopsin at 2.5 A resolution. Among seven transmembrane alpha-helices, helices V and VI extend into the cytoplasmic medium and, together with two cytoplasmic helices, they form a rigid protrusion from the membrane surface. This peculiar structure, which is not seen in bovine rhodopsin, seems to be crucial for the recognition of G(q)-type G proteins. The retinal Schiff base forms a hydrogen bond to Asn 87 or Tyr 111; it is far from the putative counterion Glu 180. In the crystal, a tight association is formed between the amino-terminal polypeptides of neighbouring monomers; this intermembrane dimerization may be responsible for the organization of hexagonally packed microvillar membranes in the photoreceptor rhabdom.  相似文献   

5.
S E Dryer  D Henderson 《Nature》1991,353(6346):756-758
Phototransduction in the vertebrate retina is dependent in part on a cyclic GMP-activated ionic channel in the plasma membrane of rods and cones. But other vertebrate cells are also photosensitive. Cells of the chick pineal gland have a photosensitive circadian rhythm in melatonin secretion that persists in dissociated cell culture. Exposure to light causes inhibition of melatonin secretion, and entrainment of the intrinsic circadian oscillator. Chick pinealocytes express several 'retinal' proteins, including arrestin, transducin and a protein similar to the visual pigment rhodopsin. Pinealocytes of lower vertebrates display hyperpolarizing responses to brief pulses of light. Thus it is possible that some of the mechanisms of phototransduction are similar in retinal and pineal photoreceptors. We report here the first recordings of cyclic GMP-activated channels in an extraretinal photoreceptor. Application of GMP, but not cyclic AMP, to excised inside-out patches caused activation of a 15-25 pS cationic channel. These channels may be essential for phototransduction in the chick pineal gland.  相似文献   

6.
M D Arshavsky VYuBownds 《Nature》1992,357(6377):416-417
The photoreceptor G protein, transducin, is one of the class of heterotrimeric G proteins that mediates between membrane receptors and intracellular enzymes or ion channels. Light-activated rhodopsin catalyses the exchange of GDP for GTP on multiple transducin molecules. Activated transducin then stimulates cyclic GMP phosphodiesterase by releasing an inhibitory action of the phosphodiesterase gamma-subunits. This leads to a decrease in cGMP levels in the rod, and closure of plasma membrane cationic channels gated by cGMP. In this and other systems, turn-off of the response requires the GTP bound to G protein to be hydrolysed by an intrinsic GTPase activity. Here we report that the interaction of transducin with cGMP phosphodiesterase, specifically with its gamma-subunits, accelerates GTPase activity by several fold. Thus the gamma-subunits of the phosphodiesterase serve a function analogous to the GTPase-activating proteins that regulate the class of small GTP-binding proteins. The acceleration can be partially suppressed by cGMP, most probably through the non-catalytic cGMP-binding sites of phosphodiesterase alpha and beta-subunits. This cGMP regulation may function in light-adaptation of the photo-response as a negative feedback that decreases the lifetime of activated cGMP phosphodiesterase as light causes decreases in cytoplasmic cGMP.  相似文献   

7.
The structural components involved in transduction of extracellular signals as diverse as a photon of light impinging on the retina or a hormone molecule impinging on a cell have been highly conserved. These components include a recognition unit or receptor (for example, the beta-adrenergic receptor (beta AR) for catecholamines or the 'light receptor' rhodopsin), a guanine nucleotide regulatory or transducing protein, and an effector enzyme (for example, adenylate cyclase or cyclic GMP phosphodiesterase). Molecular cloning has revealed that the beta AR shares significant sequence and three-dimensional homology with rhodopsin. The function of the beta AR is diminished by exposure to stimulatory agonists, leading to desensitization. Similarly, 'light adaptation' involves decreased coupling of photoactivated rhodopsin to cGMP phosphodiesterase activation. Both forms of desensitization involve receptor phosphorylation. The latter is mediated by a unique protein kinase, rhodopsin kinase, which phosphorylates only the light-bleached form of rhodopsin. An analogous enzyme (termed beta AR kinase or beta ARK) phosphorylates only the agonist-occupied beta AR. We report here that beta ARK is also capable of phosphorylating rhodopsin in a totally light-dependent fashion. Moreover, rhodopsin kinase can phosphorylate the agonist-occupied beta AR. Thus the mechanisms which regulate the function of these disparate signalling systems also appear to be similar.  相似文献   

8.
Energy uptake in the first step of visual excitation   总被引:7,自引:0,他引:7  
A Cooper 《Nature》1979,282(5738):531-533
Perception of light by the retina starts with the absorption of a photon by 11-cis retinal, which is covalently incorporated into the membrane-bound protein, rhodopsin. The initial result of photon capture is the very rapid formation of a red-shifted species, bathorhodopsin (also known as prelumirhodopsin), which is (meta-)stable at liquid nitrogen temperature but which decomposes at higher temperatures, in the dark, through a series of intermediate stages, resulting in the release of all-trans retinal from the apoprotein, opsin. Bathorhodopsin formation is the only photochemical step in the overall reaction and, therefore, merits investigation. Several models for the process have been proposed, and have been critically reviewed, although no consensus yet exists as to the nature or mechanism of formation of the batho intermediate. I report here on the first direct measurement of photon energy uptake during bathorhodopsin formation from bovine rhodopsin, and on its possible significance.  相似文献   

9.
Control of Ca2+ in rod outer segment disks by light and cyclic GMP   总被引:4,自引:0,他引:4  
J S George  W A Hagins 《Nature》1983,303(5915):344-348
Photons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity. Ca2+ efflux from rod outer segments (ROS) of intact retinas occurs simultaneously with light responses. Vesicles prepared from ROS disk membranes become more permeable on illumination, releasing trapped ions or molecules, but intact outer segment disks have not previously been found to store sufficient Ca2+ in darkness and to release enough in light to meet the theoretical requirements for control of the dark current by varying cytoplasmic Ca2+ (refs 14-18). We now report experiments that show the required Ca2+ storage and release from rod disk membranes suspended in media containing high-energy phosphate esters and electrolytes approximating the cytoplasmic composition of live rod cells. Cyclic GMP stimulates Ca2+ uptake by ROS disks in such media.  相似文献   

10.
Development of the light response in neonatal mammalian rods   总被引:9,自引:0,他引:9  
G M Ratto  D W Robinson  B Yan  P A McNaughton 《Nature》1991,351(6328):654-657
The sensitivity to light is low in many neonatal mammals when compared with that in the adult. In human infants at one month of age, for example, the dark-adapted sensitivity for detection of large stimuli is 50 times lower than in the adult, and in rats the overall sensitivity of the neonatal retina is also low compared with the adult. This low sensitivity in the neonate has been attributed to a number of factors, but the possibility that the photoreceptors themselves might be an important limitation on the overall visual sensitivity has not so far been clearly established. Here we record the light response of single neonatal rat rods and find that the sensitivity is considerably lower than in the adult. The response to a single photoisomerization is normal in the neonate, and the sensitivity deficit can therefore be attributed to a low level of functional rhodopsin. Opsin, the protein component of rhodopsin, must be present in normal amounts, as the sensitivity can be restored to adult levels by treating the retina with 9-cis retinal, an active homologue of the native chromophore 11-cis retinal. The low sensitivity of photoreceptors in the neonate can therefore be attributed mainly to a low concentration of 11-cis retinal in the developing retina.  相似文献   

11.
D Matesic  P A Liebman 《Nature》1987,326(6113):600-603
Light-modulated cytoplasmic cGMP simultaneously controls plasma membrane Na+ conductance in visual excitation and Ca2+ entry into rods by direct interaction with the cation channel. Cytoplasmic Ca2+ in turn may set operating points and contribute to the dynamics of several enzymes that regulate cGMP levels in the dark, recovery from excitation and receptor adaptation or down regulation. Similar channels may couple electrical activity to internal nucleotide metabolism in other tissues. We here report the identification, partial purification and behaviour after reconstitution of a protein of relative molecular mass 39,000 (Mr 39K) present in both disk and plasma membranes from bovine rod outer segments that mediates these cGMP-dependent cation fluxes. Its cGMP agonist specificity, kinetic cooperativity, ionic selectivity, membrane density and other features closely match the properties of the visual cGMP-dependent conductance inferred from electrophysiological measurements.  相似文献   

12.
Membrane anchoring of proteins by a covalently attached glycosyl-phosphatidylinositol moiety has been reported in many different eukaryotic cells including parasite protozoa. The diversity of proteins in which this phospholipid attachment is found suggests that it is functionally important and perhaps also functionally pleiotropic. Studies on the Thy-1 antigen of murine lymphocytes indicate that it can facilitate the lateral mobility of membrane proteins. It can also permit the rapid and specific release of the anchored proteins from the membrane following cleavage by a phosphatidylinositol-specific phospholipase C (PI-PLC). Here we show that this type of anchoring may be involved in the regulation of an enzymatic activity. PI-PLC releases a Plasmodium falciparum membrane protein of relative molecular mass (Mr) 76K (p76) from intact merozoites or isolated schizont membranes and induces a proteolytic activity associated with its soluble form. Endogenous activation of the proteolytic activity of p76 appears to occur at the end of the schizogony and could initiate a cascade of biochemical events associated with merozoite maturation.  相似文献   

13.
G-protein-coupled receptors (GPCRs) comprise the largest family of membrane proteins in the human genome and mediate cellular responses to an extensive array of hormones, neurotransmitters and sensory stimuli. Although some crystal structures have been determined for GPCRs, most are for modified forms, showing little basal activity, and are bound to inverse agonists or antagonists. Consequently, these structures correspond to receptors in their inactive states. The visual pigment rhodopsin is the only GPCR for which structures exist that are thought to be in the active state. However, these structures are for the apoprotein, or opsin, form that does not contain the agonist all-trans retinal. Here we present a crystal structure at a resolution of 3 ? for the constitutively active rhodopsin mutant Glu 113 Gln in complex with a peptide derived from the carboxy terminus of the α-subunit of the G protein transducin. The protein is in an active conformation that retains retinal in the binding pocket after photoactivation. Comparison with the structure of ground-state rhodopsin suggests how translocation of the retinal β-ionone ring leads to a rotation of transmembrane helix 6, which is the critical conformational change on activation. A key feature of this conformational change is a reorganization of water-mediated hydrogen-bond networks between the retinal-binding pocket and three of the most conserved GPCR sequence motifs. We thus show how an agonist ligand can activate its GPCR.  相似文献   

14.
W H Cobbs  E N Pugh 《Nature》1985,313(6003):585-587
To test the hypothesis that cyclic GMP is the internal messenger coupling rhodopsin activation to membrane excitation in vertebrate rod photoreceptors, we used a novel technique combining measurement of membrane currents of isolated salamander rods with a suction electrode and the introduction of cyclic GMP through a whole-cell recording patch pipette. Rupture of an attached patch was followed by a rapid (approximately 10 s), approximately 10-fold increase in outer-segment membrane current, all of which was light-sensitive. There was little change in the rising phase of the response to a saturating flash, but the duration of the saturated phase of the response increased approximately 10-fold. The effects reversed completely within 3-4 min after withdrawal of the cyclic GMP-containing patch pipette. A formal kinetic analysis shows that the first two observations are inconsistent with the postulate that cyclic GMP opens the light-sensitive conductance by simple binding to channels, unless free cyclic GMP in the outer segment is assumed to be much lower than published estimates, and most of the outer-segment cyclic GMP is bound and inexchangeable on the timescale of 200 ms. Furthermore, our results suggest that rod cyclic GMP is not involved solely in keeping the light-sensitive conductance open, but may also affect the activity of the phosphodiesterase that mediates cyclic GMP hydrolysis.  相似文献   

15.
Subsecond deactivation of transducin by endogenous GTP hydrolysis   总被引:1,自引:0,他引:1  
T M Vuong  M Chabre 《Nature》1990,346(6279):71-74
The response of a retinal rod cell to a weak flash of light is mediated by a receptor/GTP-binding protein (rhodopsin/transducin) signal transduction system and terminates within a second. The T alpha subunit of transducin (composed of subunits T alpha, T beta and T gamma) is triggered by photoexcited rhodopsin (R*) to release GDP and bind GTP. The binding of GTP causes release of the T alpha unit from T beta gamma and allows it to modulate the activity of an enzyme that generates a second messenger. Termination of the response requires the hydrolysis of the GTP by intrinsic GTPase. As with other G proteins, the GTPase activity of transducin seems to be slow. Reported in vitro turnover rates of a few molecules of GTP hydrolysed per molecule of transducin per minute imply a T alpha-GTP deactivation time of many seconds. But this time might be only a small fraction of that of the GTPase cycle. We have now used time-resolved microcalorimetry in bovine rod outer segments (ROS) to monitor the heat release due to the hydrolysis of GTP by a transducin population that had been quickly activated by flash illumination of rhodopsin. The enthalpy of GTP hydrolysis is released within 1 s at 23 degrees C. This deactivation time seems to be independent of any diffusible factor in the preparation and concurs with the termination kinetics of the rod's response. Thereafter, transducin seems unable to reload GTP for many seconds. This refractory 'resetting' time may account for the low steady-state GTPase rates in vitro.  相似文献   

16.
H R Matthews  V Torre  T D Lamb 《Nature》1985,313(6003):582-585
It is generally accepted that the light response in retinal rods involves a reduction of ionic permeability (predominantly to Na+) in the plasma membrane of the outer segment and that this is mediated by an internal messenger which diffuses between the disk and plasma membranes. There is controversy, however, over the identity of the diffusible substance; two alternative schemes have received widespread support (for review see refs 1,2). According to the 'calcium hypothesis', light stimulates the release into the cytoplasm of calcium, leading to the blockage of channels which are normally open in darkness, whereas based on the 'cyclic nucleotide hypothesis', cyclic GMP causes the opening of channels in the dark, but is hydrolysed by a light-activated phosphodiesterase. We report here effects of introducing calcium buffers and cyclic GMP into the rod cytoplasm by means of a patch pipette, which seem to be inconsistent with the calcium hypothesis.  相似文献   

17.
Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.  相似文献   

18.
Kefalov V  Fu Y  Marsh-Armstrong N  Yau KW 《Nature》2003,425(6957):526-531
Retinal rods and cones share a phototransduction pathway involving cyclic GMP. Cones are typically 100 times less photosensitive than rods and their response kinetics are several times faster, but the underlying mechanisms remain largely unknown. Almost all proteins involved in phototransduction have distinct rod and cone variants. Differences in properties between rod and cone pigments have been described, such as a 10-fold shorter lifetime of the meta-II state (active conformation) of cone pigment and its higher rate of spontaneous isomerization, but their contributions to the functional differences between rods and cones remain speculative. We have addressed this question by expressing human or salamander red cone pigment in Xenopus rods, and human rod pigment in Xenopus cones. Here we show that rod and cone pigments when present in the same cell produce light responses with identical amplification and kinetics, thereby ruling out any difference in their signalling properties. However, red cone pigment isomerizes spontaneously 10,000 times more frequently than rod pigment. This high spontaneous activity adapts the native cones even in darkness, making them less sensitive and kinetically faster than rods. Nevertheless, additional factors are probably involved in these differences.  相似文献   

19.
Plasma membrane receptors for hormones, drugs, neurotransmitters and sensory stimuli are coupled to guanine nucleotide regulatory proteins. Recent cloning of the genes and/or cDNAs for several of these receptors including the visual pigment rhodopsin, the adenylate-cyclase stimulatory beta-adrenergic receptor and two subtypes of muscarinic cholinergic receptors has suggested that these are homologous proteins with several conserved structural and functional features. Whereas the rhodopsin gene consists of five exons interrupted by four introns, surprisingly the human and hamster beta-adrenergic receptor genes contain no introns in either their coding or untranslated sequences. We have cloned and sequenced a DNA fragment in the human genome which cross-hybridizes with a full-length beta 2-adrenergic receptor probe at reduced stringency. Like the beta 2-adrenergic receptor this gene appears to be intronless, containing an uninterrupted long open reading frame which encodes a putative protein with all the expected structural features of a G-protein-coupled receptor.  相似文献   

20.
Sensory systems with high discriminatory power use neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets. However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive rhodopsin 5 (Rh5) from a subset of Drosophila R8 photoreceptor neurons. Loss of Rh6 leads to a gradual expansion of Rh5 expression into all R8 photoreceptors of the ageing adult retina. The Rh6 feedback signal results in repression of the rh5 promoter and can be mimicked by other Drosophila rhodopsins; it is partly dependent on activation of rhodopsin by light, and relies on G(αq) activity, but not on the subsequent steps of the phototransduction cascade. Our observations reveal a thus far unappreciated spectral plasticity of R8 photoreceptors, and identify rhodopsin feedback as an exclusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号