首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
岩爆是典型高地应力区主要地质灾害之一,其预测理论和发生机制的研究目前并不成熟.本文通过选择合适的影响岩爆程度的主要因素,应用BP神经网络对岩爆样本进行训练并利用预测样本进行检验,由于BP神经网络的初始权值和阀值对网络学习效率和预测结果有影响,因此其对检验样本的预测结果往往不够理想.利用粒子群算法(PSO)对BP网络的初始权值和阀值进行优化,将改进后的BP神经网络算法应用于预测,预测的结果优于BP神经网络.表明利用PSO-BP神经网络算法对实际工程中的岩爆进行预测是可行的.  相似文献   

2.
针对安徽省气象能见度数据缺测问题,本文选取安徽省四种不同地形条件下的自动气象站点(黄山站、灵璧站、山南溪谷站、白泽湖站)2017-2019年的气象数据,首先采用灰色关联分析法筛选出与能见度联系紧密的气象要素,然后构建遗传算法(Genetic algorithm, GA)和粒子群算法(Particle swarm optimization algorithm, PSO)混合算法优化BP(Back Propagation)神经网络的预测模型,对四种不同地形条件下的自动气象站点的能见度进行预测,并与RF预测模型、XGBoost预测模型的预测效果进行对比,结果表明采用GA-PSO-BP神经网络预测模型无论在哪种地形条件下,预测误差更小,模型精度更高。  相似文献   

3.
针对基于神经网络的财务预警方法网络结构复杂和训练时间长的缺点,笔者提出了基于粒子群优化神经网络的财务预警方法.首先对样本数据进行归一化处理,然后采用粒子群优化的BP神经网络来进行训练,最后用训练好的神经网络对我国上市公司财务状况进行预测.仿真实验表明,该方法克服了普通BP神经网络的缺点,使得网络结构的复杂度降低,同时提...  相似文献   

4.
粒子群算法优化神经网络的异步电机转速估计   总被引:1,自引:0,他引:1  
在异步电机的矢量控制系统中,电机的转速检测是必不可少的,并且转速检测的精度直接影响磁场定向的准确性。讨论了各种无传感器速度辨识方法的特点,利用BP神经网络对异步电机转子转速进行辨识,通过粒子群算法优化使BP神经网络获得更好的网络初始权值和阀值,在此基础上利用Matlab/Simulink建立一个异步电机矢量控制系统,仿真结果表明这种方法能较好地辨识异步电机转子转速,系统具有良好的动态性能,对系统参数变化具有较强的鲁棒性。  相似文献   

5.
现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果.  相似文献   

6.
本文提出一种粒子群优化小波神经网络的新方法.先采用基于梯度下降的误差反传算法调整小波神经网络参数,再使用粒子群算法修正,从而建立了粒子群优化的高维小波神经网络,并将该方法用于构建热连轧产品质量模型.仿真结果表明,此模型提高了预测精度和收敛速度.  相似文献   

7.
文章提出了一种将粒子群优化(PSO)算法训练的神经网络用于高校教师教学质量综合评价的方法。该方法使用由PSO训练的BP模型来拟合影响教师教学质量评价的众多指标与评价结果之间的复杂关系。与BP算法比较,该方法在提高误差精度的同时可以加快训练收敛的速度,其泛化性能也比较好。  相似文献   

8.
在分析粒子群参数特征的基础上,提出自适应粒子群优化算法,使用自适应粒子群优化BP神经网络,建立基于自适应粒子群优化BP神经网络(PSO-BP)的变压器故障诊断系统.通过对52组训练样本和28组测试样本的仿真实验,可知自适应PSO-BP法能提高变压器故障诊断的准确率,有效减小网络的误差精度.  相似文献   

9.
网络规模不断扩大的同时,也容易受到各种安全风险的威胁,因此,必须对网络安全风险进行准确评估。传统的评估系统中存在的趋势性、周期性以及随机性影响评估准确率的问题,导致评估的结果大都不准确;为此,提出并设计了基于混沌粒子群优化BP神经网络的网络安全风险评估系统。首先对系统的硬件进行了设计,并得出了设计的框图;然后使用混沌粒子群的优化算法和BP神经网络的算法对系统的软件进行了设计;最后进行了对比的实验。实验结果表明,该系统能够更好的协调,并处理评估过程中出现的问题,不会受到趋势性、周期性以及随机性的影响,能够更好的发挥网络安全评估的效果,提高评估的准确率,减小相对的误差。  相似文献   

10.
将粒子群优化算法用于前向神经网络权值的学习算法研究,以神经网络学习算法研究的典型问题之一的XOR问题作为研究实例,针对算法的收敛性、学习速度以及算法对初值的鲁棒性等性能指标,分别对标准的PSO算法、改进的PSO算法以及BP算法及其带动量项的BP算法进行了比较研究.研究表明,PSO算法在前向神经网络权值的学习算法中其所有的性能指标均优于传统的BP算法,PSO算法在神经网络的应用中具有广阔的前景.  相似文献   

11.
蒋华伟  郭陶  杨震 《科学技术与工程》2021,21(21):8951-8956
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型.采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型.为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性.  相似文献   

12.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性.  相似文献   

13.
张鹏 《科学技术与工程》2012,12(26):6801-6803
系统辨识是控制工程领域中研究的重要问题之一。首先对BP神经网络和微粒群算法进行了深入分析。以含STAT-COM电力系统为辨识对象,分别采用BP神经网络和微粒群算法对其进行辨识分析。对两种算法的收敛精度进行了分析比较。结果表明PSO算法在系统辨识上具有优势。  相似文献   

14.
教材质量评价是教材管理工作的关键环节。为了对教材质量进行科学有效地评价,提高评价工作的效率,建立了基于BP神经网络的教材质量评价模型。经过BP神经网络的构建、训练和分类等主要工作,建立了一个具有较高准确率的教材质量评价模型。通过分析结果表明,该模型能够科学和高效地评价教材的质量,具有较高的实用性。  相似文献   

15.
传统的基于图像视觉伺服控制需要计算雅可比矩阵和解雅克比矩阵的逆,其结构复杂、计算量大且系统 的实时性不够理想。基于粒子群遗传算法优化的 BP(Back Propagation)神经网络(PSO-GA-BP: Particle Swarm Optimization-Genetic Algorithm-BP)通过学习图像特征空间到机器人运动空间的映射关系,实现了“眼在手上”的 机器人视觉伺服控制,通过优化 BP 神经网络的权值和阈值,防止了其训练时间长、收敛速度慢等弊端。实验 结果表明,优化后的算法运算效率较高,所设计的控制器能使机器人末端执行器在更短的时间内达到预期位 置,图像特征点运动位置的实际值与期望值平均误差约为 2 个像素,具有良好的收敛速度和控制精度。相关结 论可为机器人视觉伺服控制提供优化依据,提高算法的应用性能。  相似文献   

16.
基于BP神经网络的环境质量评估   总被引:3,自引:0,他引:3  
利用人工神经网络对地区综合环境质量进行了评价,提出了基于BP人工神经网络、以Matlab为平台的算法程序的人工神经网络环境质量分类模型.并以某地区环境监测数据值为样本,进行了环境质量评价分析.研究结果表明,BP神经网络应用于环境质量评价无需构建复杂的参数方程,且具有基于知识学习的特性,结构简单实用,具有客观性和通用性.  相似文献   

17.
针对现有的BP神经网络算法,提出了在变步长BP神经网络算法基础上的优化方案,并将其应用于网络质量评价当中.在优化方案中,对步长的上升和下降阶段分别采用不同策略进行优化.理论分析表明:优化后的算法能够克服传统算法权值收敛过慢,和变步长算法误差收敛中的震荡问题.仿真表明,优化后的算法会使神经网络的学习误差和网络质量分类的总体误差明显下降并大幅提高评价的准确性.优化算法较传统算法相比误差收敛过程更加稳定,且学习误差下降达9.64%,网络质量分类的总体误差下降达23.1%;优化算法的验证准确率在传统算法的基础上提高了19.65%,在变步长算法的基础上提高了9.88%.由此可见,优化算法在BP神经网络的预测精度方面起到了大幅度提高的作用.  相似文献   

18.
尚宇  杨妮 《科学技术与工程》2020,20(4):1467-1472
为提高心理压力的识别率,提出一种改进的粒子群优化BP(back propagation)神经网络的压力识别算法。该算法在基本粒子群(particle swarm optimization,PSO)模型的基础上,引入了收缩因子,在收缩因子的作用下,使速度的边界限制消失,选取适当的参数来保证PSO算法的有界和收敛特性,实现对BP神经网络的优化。利用心算任务进行压力诱发,采集高压、低压状态下的心电信号,提取了与心理压力相关的心率变异性特征值,并对特征数据对比分析;建立了心理压力程度的分类模型,通过改进的PSO模型优化BP神经网络以识别心理压力。结果表明:改进的粒子群优化BP神经网络算法与BP神经网络相比收敛速度快、误差小且识别率高,该算法对心理压力的识别率可达94.83%,识别效果优于未优化的BP神经网络算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号