共查询到17条相似文献,搜索用时 75 毫秒
1.
LDA可以实现大量数据集合中潜在主题的挖掘与文本信息的分类,模型假设,如果文档与某主题相关,那么文档中的所有单词都与该主题相关.然而,在面对实际环境中大规模的数据,这会导致主题范围的扩大,不能对主题单词的潜在语义进行准确定位,限制了模型的鲁棒性和有效性.本文针对LDA的这一弊端提出了新的文档主题分类算法gLDA,该模型通过增加主题类别分布参数确定主题的产生范围,提高分类的准确性.Reuters-21578数据集与复旦大学文本语料库中的数据结果证明,相对于传统的主题分类模型,该模型的分类效果得到了一定程度的提高. 相似文献
2.
基于语义理解的文本相似度算法 总被引:26,自引:0,他引:26
相似度的计算在信息检索及文档复制检测等领域具有广泛的应用前景.研究了文本相似度的计算方法,在知网语义相似度的基础上,将基于语义理解的文本相似度计算推广到段落范围,进而可以将这种段落相似度推广到篇章相似度计算.给出了文本(包括词语、句子、段落)相似度的计算公式及算法,用于计算两文本之间的相似度.实例验证表明,该算法与现有典型的相似度计算方法相比,计算准确性得到提高. 相似文献
3.
通过主题模型与语义网络对旅游电商中的评论文本进行挖掘,从而引导消费者与商家对评论信息作出重要决策;提出一种基于LDA(Latent Dirichlet Allocation,LDA)主题聚类与语义网络模型(LDA topic clustering and semantic network model,LTC-SNM)的方法对酒店在线评论文本进行研究;获取在线评论文本进行数据预处理,使用Word2vec生成词向量,利用机器学习算法对评论文本进行情感分类;通过LDA主题模型对分类后的文本进行聚类,生成酒店的特征主题词;通过ROSTCM将特征主题词与所修饰的情感词生成语义网络,缓解了挖掘文本信息的复杂性;实验结果表明:提出的LTC-SNM文本挖掘方法使得在线用户评价的主题更具表达性。 相似文献
4.
基于语义距离的领域本体概念相似度研究 总被引:2,自引:0,他引:2
简要介绍了本体的概念及其分类,在提出的基于语义距离的领域本体概念相似度计算方法中,充分考虑了影响语义距离计算的四大因素,还考虑了概念相似度计算的非对称性,能够较真实地反映概念之间的语义关系. 相似文献
5.
基于LDA的文本聚类在网络舆情分析中的应用研究 总被引:1,自引:0,他引:1
针对传统的基于词语的文本聚类算法忽略了文本中可能具有的隐含信息的问题,提出了一种基于LDA(latent dirichlet allocation)主题模型的文本聚类算法。该方法利用TF-IDF算法和LDA主题模型分别计算文本的相似度,通过耗费函数确定文本相似度的融合系数并进行线性结合来获取文本之间的相似度,同时使用F-measure值来对聚类结果进行评估。在构建LDA主题模型时,采用Gibbs抽样来进行参数估计,通过贝叶斯统计的标准方法进行最优主题数的确定。从仿真实验的聚类结果的准确性和稳定性来看,该方法相比传统的文本聚类算法具有更良好的效果。 相似文献
6.
基于概念匹配的语义检索模型研究 总被引:1,自引:0,他引:1
传统的搜索技术,主要集中在关键字匹配方面,基本上没有涉及到语义层次,其查全率和查准率上都无法满足用户的需求;对于当前利用本体推理而实现语义检索的模型,对本体的完整性要求过高,检索范围也局限在某一特定领域;结合本体的知识,利用本体中概念之间关系,提出了一种基于概念匹配的语义检索模型,它减少了对本体完整性的过高要求和对本体的过分依赖,并在一定程度上实现了对用户查询的语义理解和概念区分,扩大了检索领域范围,提高了检索性能。 相似文献
7.
8.
一种基于语义距离的高效文本聚类算法 总被引:6,自引:0,他引:6
摘 要:提出了一种基于语义进行文本聚类的新方法。该方法从语义上具体分析文档,利用文档具体语义计算文档间的相似度,使得文档聚类结果更合理。文本聚类主要采用最近邻聚类算法,并提出第二次聚类算法改进最近邻算法对输入次序敏感的问题。类特征词的选择上根据相似度权重优胜略汰类特征词,使得最后类特征词越来越逼近类的主题。实验结果表明本文所提出的算法在聚类精度和召回率上均优于基于VSM的K-Means聚类算法。 相似文献
9.
为了实现基于概念视频检索中从底层内容到查询的语义贯通,应用基于WordNet词典的语义相似度算法,通过对三种不同原理的算法对比应用,得出基于信息量算法在本应用中更有优势,语义匹配可以提高检索精度,最优映射数目为2至3个,以及在目前发展水平下,映射到合适的概念比检测器精度更合适四个重要结论. 相似文献
10.
提出一种结合LDA及语义相似度的商品评论情感分类方法。该方法首先使用LDA对商品语料库建模,获取文档-主题矩阵;人工选择k对褒义词、贬义词,基于HowNet语义相似度计算主题(评价对象+观点内容)与各个褒义词和贬义词的相似度,达到对观点词极性判断,计算文本观点词情感极性的加权和作为文本的情感极性。实验表明,与基于向量空间的SVM分类方法相比,该情感分类方法在分类指标上表现更好。 相似文献
11.
随着智能终端的普及,文本的主题挖掘需求也越来越广泛,主题建模是文本主题挖掘的核心,LDA生成模型是基于贝叶斯框架的概率模型,它以语义关联为基础,很好地解决了文本潜在主题的提取问题。对文本聚类过程的核心技术LDA生成模型、数据采样、模型评价等作了较为深入的阐述和解析,结合网络教育平台的2 794篇学习刊物进行了主题发现和聚类实验,建立了包含3 800个词项的词库,通过kmeans算法和合并向量算法(UVM)分两步解决了主题聚类问题。提出了文本挖掘实验的一般方法,并对层次聚类中文本距离的算法提出了改进。实验结果表明,该平台刊物的主题整体相似度比较好,但主题过于集中使得许多刊物的内容不具有辨识度,影响用户对主题的定位。 相似文献
12.
针对文本分类中文本数据表示存在稀疏性、维度灾难、语义丢失的问题,提出一种基于单词表示的全局向量(global vectors for word representation, GloVe)模型和隐含狄利克雷分布(latent Dirichlet allocation, LDA)主题模型的文本表示改进方法。利用GloVe模型结合局部信息和全局词语共现的统计信息训练得到文本的稠密词向量,基于LDA主题模型生成文本隐含主题和相应的概率分布,构建文本向量以及基于概率信息的主题向量,并计算两者之间的相似性作为分类器的输入。实验结果表明,相比其他几种文本表示方法,改进方法在精确率、召回率和F_1值上均有所提高,基于GloVe和LDA的文本表示改进方法能有效提升文本分类器的性能。 相似文献
13.
袁晓峰 《成都大学学报(自然科学版)》2014,33(3):251-253
计算文本相似度常用的方法是计算以VSM表示的文本之间的夹角余弦值,但这种方法并没有考虑文本中词语之间的语义相似度.另外由于计算余弦值时要考虑VSM向量对齐,从而导致计算的高维度、高复杂性.《知网》作为一个汉语常用的知识库得到广泛的研究,利用该知识库能方便地求得汉语词语之间的相似度.利用《知网》计算每篇文本中词语之间的相似度,对VSM进行改进,用少量特征词的TF/IDF值作为改进后的VSM向量中的权重,进而计算文本之间的相似度.通过比较改进前后的VSM的维数、召回率和准确率,结果显示,改进后的算法明显降低了计算的复杂度并提高了召回率和准确率. 相似文献
14.
文本特征选择是自然语言处理中的关键问题。针对文本特征的高维性和稀疏性问题,在过滤式特征选择算法文档-逆文档评率(term frequency-inverse document frequency, TF-IDF)的基础上,提出了用遗传算法对文本特征进行优化选择,使其最大程度地贴合后续的文本分类算法,在保证文本分类精确度的同时,降低特征维度以缩减预测时间。实验显示,该算法与单一的过滤式文本特征选择算法相比,能够有效减少所选文本特征数量(即降低特征维度),能有效提高文本的分类能力。 相似文献
15.
传统的文本表示是在向量空间模型的基础上,采用特征选择方法降低文本的维数,这种方法认为文本中词语是相互独立的,没有考虑彼此之间的语义信息.文章提出一种新的基于语义特征选择的文本分类方法,在已有特征选择的基础上,利用词语之间的语义关联性,将那些与已选择的词语具有密切联系的词语加入词语特征空间.实验表明,该方法与已有的特征选... 相似文献
16.
针对LDA(Latent Dirichlet Allocation)主题模型生成的大量topic,很大部分topic内部词语相关度很低,可解释性差,对语言模型后的应用效果带来一定的影响.针对这一问题,该文提出了一种基于主题加权LDA模型的情感分类方法,该模型实现不同主题中内部相关的词语特征加权计算,能够消除不同主题内具有相关度词语的相互影响.实验结果表明,与传统LDA模型分类方法对比,该文提出的基于主题加权LDA模型的情感分类方法平均F1值提高了6.7%~8.1%,验证了该文提出的方法是有效的,提高了分类效果. 相似文献