首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
钢纤维对UHPC基体的增强增韧作用,受到其材料、形状、尺寸和掺量等因素的影响.本文采用优化设计后的狗骨试件尺寸,以目前应用最多的圆直钢纤维和弓形钢纤维为对象,对UHPC材料进行单轴拉伸试验研究,并与抗折、劈裂强度试验结果进行对比分析;分析在钢纤维体积掺量为2%的情况下,单掺不同形状圆直钢纤维和弓形钢纤维对UHPC基本材料性能的影响,并分析纤维增强系数和长径比之间的关系.掺有钢纤维的试验组,随纤维长径比的增大,应力-应变曲线中的弹性段峰值点增大,硬化段增长,软化段变得平缓,曲线所包围面积也增大.掺弓形钢纤维试验组曲线下降段呈现锯齿形.掺量相同时,圆直长纤维对轴拉强度、极限应变、弹性模量的提高效果明显,短纤维对初裂强度的提高效果明显.弓形钢纤维增强的UHPC,随纤维长径比的增大,其轴拉强度、极限应变、弹性模量和断裂能增强,其初裂强度递减.纤维增强系数和其形状、长径比有关.  相似文献   

2.
基于最大堆积密度理论,研究超高性能混凝土(UHPC)的配合比设计方法.采用修正的AndreasenAndersen法计算石英砂级配,通过密度试验确定水泥和硅灰的相对质量分数;根据单一变量试配试验确定砂胶质量比、水胶质量比和纤维体积分数,综合考虑抗压强度和工作性能2个因素确定最佳配合比.按最佳配合比制作立方体试件和轴心受拉试件,进行受压和单轴拉伸力学性能试验,研究UHPC受压和单轴受拉力学性能以及纤维体积分数对UHPC单轴受拉力学性能的影响.结果表明:按照最佳配合比制备的UHPC,其抗压强度为116.64~134.85MPa,抗拉强度为4.761~8.504MPa;随着纤维体积分数的增加,抗拉强度和韧性都大幅提高,试件也由脆性破坏转变为韧性破坏.研究成果可以为UHPC在国内的推广应用提供一定参考.  相似文献   

3.
为得到钢纤维增强活性粉末混凝土(RPC)的受拉应力—应变曲线,采用自行设计的试验装置,完成了不同钢纤维体积掺量(Vf)时活性粉末混凝土的轴向拉伸试验,测出了Vf=1%、2%的活性粉末混凝土受拉应力—应变全曲线。试验结果表明,钢纤维增强RPC的受拉应力—应变全曲线分为上升段、峰值后应力骤降段、应力稳定段和下降段;随钢纤维掺量的增加,钢纤维增强RPC的抗拉强度、峰值应变、弹性模量增大,受拉破坏形式从脆性转变为延性。RPC的受拉峰值应变与其他混凝土相比无明显提高,其裂后延性优势应结合配筋形式发挥。  相似文献   

4.
为研究低掺量下钢纤维对混凝土劈裂抗拉强度以及抗折强度的影响,以钢纤维体积掺量、钢纤维类型、混凝土基体强度等级为主要参数,进行了钢纤维混凝土立方体劈裂抗拉标准试验以及小梁抗折标准试验研究.结果表明:钢纤维的掺入对混凝土劈裂抗拉强度以及抗折强度有显著提高,钢纤维体积掺量为0.9%时,劈裂抗拉强度提高37%,抗折强度提高18%;钢纤维的掺入显著改善了混凝土抗拉及抗折破坏形态,试件破坏后整体性较好;波纹型钢纤维和端钩型钢纤维的劈裂抗拉性能及抗折性能要优于螺纹型钢纤维.  相似文献   

5.
钢纤维掺量对R-UHPC梁受弯性能影响的研究   总被引:2,自引:0,他引:2  
以钢纤维掺量为主要参数,进行了5根R-UHPC梁的受弯性能试验.分析了试验梁的荷载-挠度曲线、截面应变和破坏状态.试验结果表明:UHPC材料根据其极限拉应变与钢筋屈服应变的关系,可分为U0类、U1类和U2类.U0类UHPC受拉应力-应变曲线无硬化段,当材料出现开裂,UHPC就退出工作,其抗弯极限承载力不应考虑UHPC的抗拉贡献.U1类、U2类有硬化段,材料开裂后,UHPC并未退出工作,尤其是U2类的R-UHPC梁,UHPC拉应力对梁抗弯极限承载力贡献率大于20%,在计算时需要考虑这部分贡献.从纤维掺量对UHPC抗拉性能出发,推导了R-UHPC梁抗弯极限承载力的计算方法,其结果稳定,且与实测值吻合较好.  相似文献   

6.
含粗骨料超高性能混凝土力学性能研究   总被引:1,自引:0,他引:1  
针对超高性能混凝土(UHPC)胶凝材料用量大,前期成本高等问题,通过在UHPC体系中掺入粗骨料,用河砂代替石英砂,成功制备了具有优异力学性能的含粗骨料UHPC,并通过试验研究了粗骨料掺量以及钢纤维几何参数对含粗骨料UHPC力学性能的影响.结果表明:随着粗骨料掺量的增加(0~800kg/m3),UHPC抗压强度先增加后下降,静力受压弹性模量几乎呈线性增加;粗骨料掺量为0~400kg/m3时,UHPC抗弯拉强度和初裂强度变化较小,粗骨料掺量为400~800kg/m3时,UHPC抗弯拉强度和初裂强度明显下降;随着粗骨料掺量的增加(0~800kg/m3),UHPC弯拉荷载-挠度曲线变化明显,弯曲韧性明显下降,但均存在应变硬化过程;随着钢纤维长度增加,UHPC的抗压强度、抗弯拉强度以及弯曲韧性均增加,但是静力受压弹性模量和初裂强度变化较小.  相似文献   

7.
试验研究了钢纤维和聚丙烯纤维单一掺入,以及混合掺入时对再生混凝土力学性能的影响。结果表明:在再生混凝土中掺入钢纤维后,其各项力学性能都有所提高;单掺入聚丙烯纤维后其抗压强度有所降低,但显著提高了其劈裂抗拉强度和弹性模量;掺入混杂纤维后其抗压强度介于单掺钢纤维和单掺聚丙烯纤维之间,弹性模量受钢纤维掺量的影响较大,劈裂抗拉强度有显著提高,最高增强率达53.8%。加入纤维后,再生混凝土由脆性破坏变成塑性破坏。  相似文献   

8.
为研究钢纤维掺量对FRP管约束超高性能混凝土(UHPC)轴压性能的影响,以FRP管厚和钢纤维掺量为变量,设计制作了27个FRP管约束UHPC (UHPC-FFT)圆柱和9个无约束UHPC圆柱试件,通过单调轴压试验研究钢纤维掺量对不同约束刚度UHPC-FFT试件极限应变、抗压强度的影响.结果表明:FRP管厚是影响UHPC-FFT轴压性能的关键因素,增大管厚能大幅提高UHPC-FFT的抗压性能.管厚较小的UHPC-FFT试件变形经历线弹性、软化和线性强化3个阶段,而当管厚增大到能提供足够约束时,试件变形将从线弹性阶段直接过渡到线性强化阶段.加入钢纤维能减缓初始峰值荷载后的荷载突降,且试件破坏后仍保持为整体.钢纤维掺量的影响在管壁较薄的试件中表现得较为明显;当管壁足够厚时,钢纤维影响较小.  相似文献   

9.
钢纤维增强超高强混凝土拉压比试验研究   总被引:1,自引:0,他引:1  
在超高强混凝土(C100级)中掺入螺纹型钢纤维,通过立方体抗压强度与劈裂抗拉强度试验,研究钢纤维对超高强混凝土增强增韧效果和拉压比性能的影响.立方体试件尺寸为100mm×100mm×100mm,钢纤维掺量为0、0.50%、0.75%、1.00%、1.50%.试验结果表明,掺入钢纤维后,超高强混凝土立方体试件裂缝开展路径较多,裂而不散,坏而不碎,抗压韧性显著增强;抗压强度提高10.6%~15.5%,劈裂抗拉强度提高38.2%~91.9%;掺入钢纤维的超高强混凝土拉压比为0.060 5~0.084 6,拉压比提高24.08%~73.46%.提出了钢纤维超高强混凝土立方体抗压强度与劈裂抗拉强度预测模型,预测值与试验值误差分别在±1.79%、±17.84%范围内.掺入钢纤维可使超高强混凝土脆性大、韧性小的缺点得到显著改善.  相似文献   

10.
钢纤维掺量会影响超高性能混凝土(UHPC)的抗拉、抗压强度等材性,进而影响钢筋UHPC(R-UHPC)矩形梁的受弯、受剪性能.开展纤维掺量对R-UHPC梁抗弯、抗剪极限承载力的影响分析.结果表明,随纤维掺量的提高,R-UHPC梁的抗弯、抗剪承载力均相应提高.但由于钢纤维对抗弯、抗剪极限承载力的贡献量不同,提高的作用也不同.钢纤维掺量对R-UHPC梁抗弯承载力的影响远小于它对抗剪承载力的影响.对于R-UHPC矩形梁,存在一个临界的钢纤维掺量.当钢纤维掺量小于此值时,梁将受剪破坏,反之,将受弯破坏;临界钢纤维掺量附近的R-UHPC梁则可能发生弯剪复合破坏.此外,钢纤维掺量还会影响矩形梁的斜裂缝开裂荷载.  相似文献   

11.
基于浇筑在混凝土棱柱体试件纵向轴心的螺纹钢筋与混凝土共同作用原理进行了混凝土单轴抗拉力学性能试验.采用标准养护条件下无置换与粉煤灰置换20%水泥两种混凝土作对比,系统考察了早龄期为中心的粉煤灰混凝土的弹性模量.研究结果表明,对于任意龄期的粉煤灰混凝土,其拉伸弹性模量都高于压缩弹性模量20%以上.由规范中弹性模量计算公式的计算结果与试验结果比较得知,无论是粉煤灰混凝土还是普通混凝土其试验值都高于计算值近9 GPa.  相似文献   

12.
【目的】研究初始晶向倾角为15°的样品分别在垂直和水平方向上,单轴拉应变作用下的纳观尺度裂口发射位错与裂纹扩展行为,了解韧性裂纹的生长特征和扩展规律,揭示纳米级韧性裂纹扩展机理及其对材料断裂的影响。【方法】采用晶体相场(PFC)方法观察15°晶向倾角下位错发射与裂纹扩展演化图及其对应的应力曲线图。【结果】垂直和水平不同方向拉应变作用下裂纹扩展方向不同,但裂纹都是韧性断裂模式扩展;当单轴拉应变作用达到临界值时,样品裂口开始发射滑移位错,随着外应力的增大,位错在滑移过程中留下一系列空位,空位长大连通形成裂纹并与主裂口相连,裂纹随着位错运动而扩展。【结论】在韧性裂纹扩展中,位错发射的运动对韧性裂纹扩展演化有重要影响。  相似文献   

13.
为研究玄武岩纤维对再生混凝土轴心受拉性能的影响,通过自行设计的混凝土轴拉试验装置,对不同玄武岩纤维体积掺量下(0、0.1%、0.2%、0.3%、0.4%和0.5%)的玄武岩纤维再生混凝土(basalt fiber recycled aggregate concrete,BFRAC)进行了轴心受拉试验,并分别与玄武岩纤维增强混凝土(basalt fiber reinforced concrete,BFRC)进行比较.研究结果表明,随着纤维掺量的增加,BFRAC的初裂强度、轴拉强度、初裂应变、峰值应变和初始弹性模量均呈现先增加后减小的趋势,纤维掺量为0.3%时,各项轴拉性能达到最大值,对应的提升率分别为40.5%、35.4%、10.4%、22.4%和16.9%.玄武岩纤维对再生混凝土轴拉性能的提升效果要优于普通混凝土.  相似文献   

14.
将作者近20年来对岩石单轴综合测试的数据列表,这些数据有岩石单轴抗压强度、抗张强度、抗剪强度、弹性模量、泊松比和内摩擦角等,并确定了岩石单轴抗压强度与抗张强度的比值;还将岩石按其强度划分了等级,以资生产实践应用。  相似文献   

15.
采用户外暴露试验模拟飞艇囊体材料的自然老化,利用耐揉搓性试验模拟飞艇气囊在加工、运输、储存、收放和服役过程产生的折皱损伤,研究了飞艇囊体材料Uretek3216-LV在短期老化和折皱损伤作用下的单轴拉伸性能退化规律。通过试验数据分析,得到了短期老化和揉搓次数对单轴拉伸强度以及拉伸弹性模量影响的曲线。结果表明:随着老化时间的增加,材料经、纬向的单轴拉伸强度有所降低,但拉伸弹性模量略有增加;随着揉搓次数的增加,材料的单轴拉伸强度和弹性模量均明显降低;当老化和揉搓共同作用于材料时,随着揉搓次数的增加,老化时间对材料单轴拉伸力学性能的影响逐渐减弱。研究结果可为Uretek3216-LV材料应用于飞艇气囊的结构设计与分析提供重要依据。  相似文献   

16.
充填体抗拉强度特性的试验研究   总被引:1,自引:0,他引:1  
充填体可以改善围岩应力状态、限制围岩移动、维护采场稳定.通过在室内条件下制作和养护充填体试件,然后采取劈裂法对不同配比和浓度的充填体试件进行测试,得出了充填体试件在不同配比、浓度下的峰值载荷、峰值位移、平均峰值应变、抗拉强度以及应力-应变曲线.通过分析这些拉伸试验条件下的力学性质,对提高充填体质量和维护采场稳定有指导作用.  相似文献   

17.
采用条样法与抓样法的单向拉伸,以及一向固定另一向拉伸和两个方向同时拉伸的双向拉伸方法,测试了3种棉纬平针织物的拉伸最终变形值,比较了4种拉伸方法测试结果的差异.基于Peter的模型,对不同测试方法下试样的最终变形进行计算.研究表明理论预测与实验测试结果基本一致.  相似文献   

18.
采用分子动力学方法模拟纳米单晶铜板的拉伸/压缩变形过程,得到了纳米单晶铜板在单向拉伸/压缩状态下的应力应变关系曲线和垂直于拉伸/压缩方向的泊松比.结果表明,纳米单晶铜板在单向拉伸/压缩状态下的弹性极限应变分别约为0.08和-0.03。在此范围内应力应变关系基本上表现为线弹性;垂直于拉伸/压缩方向的两个泊松比取值于0.3~0.4之间,但是不同方向上的泊松比数值不同,表现出由尺寸效应引起的材料力学行为的各向异性.  相似文献   

19.
为明确热塑性塑料塑性变形阶段加载-卸载-再加载的力学行为,采用注塑成型方法制备了哑铃型聚丙烯试样,进行了单轴拉伸实验。实验结果表明:所制备的试样具有良好的性能稳定性,试验结果重现性好,应力-应变曲线符合部分结晶热塑性塑料的一般行为。通过不同应变速率测试结合断口形貌扫描电子显微镜(scanning electron microscope, SEM)观察,表明应变速率超过50 mm/min时,试样由韧性断裂转变为脆性断裂,断口形貌由穿晶断裂形貌转变为河流花样形貌。聚丙烯的加载-卸载-再加载测试表明,在低应变速率情况下,塑料在再加载之后的应力-应变曲线存在明显的再屈服行为,与金属的包辛格效应存在明显不同。加载-卸载-再加载的应力-应变曲线会出现第二个屈服点,其屈服应力低于第一屈服应力,并且其数值与卸载点应变无关。研究结果为热塑性塑料塑性阶段的加工和使用提供理论支持。  相似文献   

20.
采用熔融共混方法制备质量分数为4%的蒙脱土尼龙6/蒙脱土纳米复合材料.X射线衍射和透射电子显微镜研究表明:蒙脱土均匀分散在尼龙6基体中,形成具有剥离结构的纳米复合材料;在室温~200℃,当相同的温度和拉伸比拉伸时,尼龙6/蒙脱土纳米复合材料的结晶度均低于尼龙6,蒙脱土在此温度范围内对尼龙6均具有增强作用,这是由于蒙脱土和尼龙6分子间的相互作用限制了尼龙6分子链的运动,使尼龙6不易拉伸所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号