首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对岩质反倾边坡滑动倾倒复合破坏的研究不足,首先建立了边坡滑动-块状倾倒-弯曲倾倒复合破坏的地质模型,具体可分为滑动区、块状倾倒区和弯曲倾倒区;然后根据三个分区岩块的破坏机制,提出了各个分区的力学模型;并基于极限平衡理论和悬臂梁模型,提出了边坡滑动-块状倾倒-弯曲倾倒复合破坏的逐步分析方法;最后通过一个工程实例验证了所提地质模型和分析方法的正确性.研究结果表明:岩质反倾边坡滑动-块状倾倒-弯曲倾倒复合破坏的稳定性由滑动-块状倾倒复合破坏区域控制;块状倾倒区域属于主动破坏区域,滑动区属于被动破坏区域,治理加固时应重点加固块状倾倒破坏区.  相似文献   

2.
反倾岩质边坡的岩性特征、坡角、岩层倾角等自身特性主导了边坡的变形破坏的模式和稳定性.针对这一问题,国内外学者在均质反倾岩质边坡方面已经取得了丰富的研究成果并达成共识,然而,对于软硬互层的反倾岩质边坡其研究工作开展较少.鉴于此,本文以phase2为工具,采用数值模拟手段对软硬互层的反倾岩质边坡的稳定性和破坏模式进行研究.计算结果表明:软硬互层反倾岩质边坡的安全系数随着坡角β的增加逐渐降低.当坡角小于60°时,岩层倾角和软岩/硬岩层厚比的增加均会导致稳定性变差.当坡角大于60°时,岩层倾角和软岩/硬岩层厚比对稳定性影响很小;当坡角或岩层倾角小于45°时,软硬互层反倾岩质边坡破坏的倾倒特征并不明显,当坡角或岩层倾角大于45°时,随着坡角或岩层倾角的增加,边坡破坏的起始区域由边坡坡脚前缘向边坡坡面上部转移,随着软岩/硬岩层厚比的增加边坡的破坏面逐渐由直线型向圆弧形发展.  相似文献   

3.
反倾层状边坡倾倒变形破坏模式的岩层等厚度特性研究   总被引:1,自引:0,他引:1  
为检验等厚层状特性这一假定条件在反倾岩质边坡研究中的适用性,以重庆市硝洞槽-郑家大沟反倾层状岩质岸坡为实例进行数值模拟验证。首先建立二维简化工程地质模型;并利用离散元软件(UDEC)对反倾边坡在相邻岩层不同厚度比值(1.0∶0.1)~(1.0∶1.0)条件下分别进行数值模拟计算。然后对比分析不同岩层厚度比值条件下边坡弯曲倾倒变形特征,得出了反倾层状边坡倾倒变形随相邻岩层厚度比值变化规律。最后通过工程实例对研究结做进一步验证。主要得出以下结论:1相邻岩层厚度越相近边坡越易发生弯曲倾倒变形;2仅当相邻岩层厚度比值处于(1.0∶0.8)~(1.0∶1.0)范围内时,反倾边坡才能可视为等厚层状分布。  相似文献   

4.
采用FLAC3D强度折减法,研究在岩层倾角、岩层与边坡走向夹角变化时三维软硬互层边坡的稳定性状况,并对其破坏模式进行辨识与归纳分析.结果表明:边坡破坏模式的判别应综合考虑岩层的倾角大小、岩层走向与边坡走向的夹角大小及坡面上的剪出条件;当岩层与边坡走向夹角β<90°时,随着岩层倾角α的增大,边坡的破坏模式变化趋势为由蠕滑-压致拉裂、塑流-拉裂、滑移-拉裂向滑移-弯曲、弯曲-拉裂转变;当β>90°时,边坡的破坏模式趋势为塑流-拉裂、滑移-弯曲、弯曲-拉裂;边坡稳定性系数随走向夹角的增大先增加后减小,β=90°时最大,且α越大,稳定性系数峰值越大;顺向时随着岩层倾角的增大,边坡的破坏模式变化趋势为蠕滑-压致拉裂、滑移-拉裂、滑移-弯曲、弯曲-拉裂,稳定性系数变化先减小后增大,存在一最不利岩层倾角,其对应的稳定性系数最小;反向坡的破坏模式变化趋势为蠕滑-压致拉裂和弯曲-拉裂,稳定性系数逐渐增加.  相似文献   

5.
以遵义某软硬互层岩质边坡为例,采用离散元方法,研究了上硬下软类岩质边坡崩塌破坏发展过程。研究结果表明:边坡在暴雨工况下整体发生倾倒式崩塌破坏,在一定范围内,可分为上部的倾倒破坏区,中间的塑流拉裂式变形区和下部的平推式滑动区。暴雨是引发该类崩塌的主要因素,边坡后缘裂隙中的静水压力是崩塌主要的起动力。该类边坡的防治应从降低暴雨引发的裂隙水压力入手,采用排水和锚固的措施来防治崩塌灾害的发生。  相似文献   

6.
为研究反倾边坡倾倒变形分布区域几何特征,以重庆硝洞槽岸坡为研究实例,首先在现场工程地质调查分析基础上,采用Arc GIS进行岸坡地质几何分区;然后对地表离散位移监测数据采用距离反权重插值法得出岸坡倾倒变形位移云图;最后叠加地质几何分区与位移图层,得出岸坡倾倒水平和垂直强变形分布区几何特征。研究结果表明:(1)岸坡地质几何分区中面积最大分区为211,即中等坡度、低高程、北坡向区;(2)岸坡水平强变形最大面积区为211,即中等坡度、低高程、北坡向区,占该区总面积的79.24%,岸坡垂直强变形最大面积区为137,即低坡度、高高程、西北坡向区,占该区总面积的87.9%。  相似文献   

7.
为研究反倾边坡倾倒变形分布区域几何特征,以重庆硝洞槽岸坡为研究实例,首先在现场工程地质调查分析基础上,采用Arc GIS进行岸坡地质几何分区;然后对地表离散位移监测数据采用距离反权重插值法得出岸坡倾倒变形位移云图;最后叠加地质几何分区与位移图层,得出岸坡倾倒水平和垂直强变形分布区几何特征。研究结果表明:(1)岸坡地质几何分区中面积最大分区为211,即中等坡度、低高程、北坡向区;(2)岸坡水平强变形最大面积区为211,即中等坡度、低高程、北坡向区,占该区总面积的79.24%,岸坡垂直强变形最大面积区为137,即低坡度、高高程、西北坡向区,占该区总面积的87.9%。  相似文献   

8.
针对工程实践中常见的反倾层状岩体边坡,在室内不同浸水时间三轴试验数据分析基础上分析了软化效应.然后运用离散元UDEC方法建立了反倾层状边坡数值模型,考虑水的劣化效应,研究不同坡高、坡角、结构面倾角、结构面强度对边坡稳定性的影响及变形破坏范围,探讨了反倾层状边坡水劣化作用下的变形破坏机理.结果表明:坡脚软化在许多情况下是最不利的因素;层面倾角超过50°时,边坡具备产生强烈倾倒变形条件,反之则以折断滑动为主;随着结构面摩擦力和粘聚力的减小,边坡的潜在破坏范围和深度呈现增大趋势.研究结果可为倾倒变形边坡的工程治理提供参考.  相似文献   

9.
文章在层状岩质边坡倾倒变形破坏地质现象调查分析和模拟试验的基础上,借用物理学概念定义了边坡倾倒变形角位移ω,并运用数理统计等方法对倾倒变形边坡岩体结构、倾倒岩体折断面形态和岩层倾角变化进行系统研究。研究表明层状边坡弯曲—倾倒—折断破坏后岩体具有不同的结构特征,并以此对边坡倾倒变形强烈程度进行分类;岩体折断面的形态可概括为直线、折线和近弧线等3种类型,以折线最为常见;倾倒变形岩体层面倾角与坡高呈负指数关系,建立了以倾倒岩体角位移ω为核心的山区岩质边坡倾倒变形强烈程度分级体系。  相似文献   

10.
反倾层状岩质边坡变形破坏的颗粒流模拟研究   总被引:1,自引:0,他引:1  
基于颗粒流程序对反倾层状岩质边坡变形破坏过程进行模拟,并考虑岩体结构面参数(岩层倾角、层厚及层理剪切强度)对其变形破坏机制的影响。数值模拟结果表明:边坡岩层的主要变形破坏方式为弯曲变形、折断破坏,变形首先发生在坡顶,而破坏是从坡脚开始,边坡的变形破坏过程具有明显的悬臂梁特征;岩层倾角对反倾岩质边坡整体性失稳破坏方式有较大影响,随着岩层倾角的增大,边坡后期整体性破坏方式由滑移型逐渐过渡为倾倒型破坏,坡体内部岩体出现变形及破裂损伤的深度也逐渐增加;随着岩层厚度增加,坡脚岩体抗折断能力增强,破坏方式由折断破坏向剪切破坏发展,边坡后期的整体性破坏方式也由滑移型向倾倒型过渡;岩层层面剪切强度是影响边坡变形的重要因素,层面剪切强度越小,边坡发生弯曲变形的程度越大。  相似文献   

11.
陡倾外软硬互层斜坡在静力条件下的稳定性一般较好,但是在"5.12"汶川地震中该种形式的斜坡却发生了大量的失稳现象。以四川安县干磨坊陡倾外软硬互层斜坡在地震作用下失稳案例为基础,利用二维离散元数值模拟方法开展研究。研究表明:动力响应加速度放大系数PGA在坡体下部岩体弯曲处和坡顶增大最为明显,而在同一高程范围内随坡表水平距离的增加,PGA则呈现出先增大后减小的趋势;且该类斜坡的破坏过程可以分为三个阶段:①强大的地震力使坡体内软弱层面逐渐的张开,坡体下部岩土体向临空面轻微隆起。②斜坡下部锁固段岩层发生弯曲折断,上部局部贯通层面同下部岩层折断面构成斜坡潜在的滑动面。③坡坡下部岩层完全折断,潜在滑移面完全贯通,发生溃滑。  相似文献   

12.
路桥、水利工程中存在很多含有不连续结构面的反倾岩质边坡,结构面的接触机理对边坡的整体稳定性产生影响,甚至起到控制作用.本文基于强度折减法,把三维离散元法引入到反倾边坡的稳定性分析中,采用三维离散元法研究不连续面摩擦角等对边坡稳定性的影响,并采用加固措施对边坡的失稳破坏进行加固处理,加固效果明显.  相似文献   

13.
为研究缓倾顺层软硬互层岩质边坡在间歇性循环降雨条件下的破坏过程及内部力学响应规律,结合叠加雾化降雨系统,进行了大型室内降雨地质力学物理模拟试验.通过总结强降雨工况下模型边坡内部特殊位置处孔隙水压力的力学响应规律,并依据坡体实际破坏过程监测资料,探究坡体内部力学性质与坡体破坏之间的内在联系.结果表明:间歇性循环降雨是边坡...  相似文献   

14.
为了解决边坡岩体结构的稳定性评价及其力学变形特性,采用了离散单元理论和利用UDEC(Universal Distinct Element Code)技术,用离散块体模拟节理发育反倾边坡破坏机理和加固变性过程。将此理论和技术应用于贵阳市乌开公路K44+340~K44+450段右侧滑坡工程;研究了塑性变化范围和发展趋势;同时还利用独有的离散滑动的优势分析软弱结构面上的块体滑移和节理张拉破坏的演变过程,该成果对岩体边坡工程具有一定的参考价值和指导意义。  相似文献   

15.
江习高速四面山隧道软硬互层围岩为近水平岩层,弹性模量比值为1∶5,黏聚力比值为1∶4,层理效应明显,且层理与隧道相对位置不一,对隧道开挖影响也不同。以砂泥互层V级围岩隧道施工段为工程依托,采用接触分析方法,研究层理与隧道相对位置关系对隧道变形影响,并进行变形预测,得出以下结论:(1)隧道开挖后,其拱顶沉降相对水平收敛变化更大,层理层间滑移相对层间剥离变化更明显。(2)隧道拱顶沉降受隧道上方层理影响最大,水平收敛受穿隧道层理影响最大,底鼓受隧道下方层理影响最大。(3)对于层理本身,隧道开挖对断面以上位置的层理影响更大,对其下方层理影响较小,层理位于隧道上方层理滑移最大,层理穿越隧道断面时层间剥离量最大。研究成果可在类似隧道提出针对性施工工艺设计建议并推广应用。  相似文献   

16.
软硬岩互层边坡坡体结构复杂,岩体力学特性差异极大,结构面多样。受岩体及结构面种类控制,该类边坡破坏机理多样。常见破坏模式有:滑移-拉裂-剪断、滑移-拉裂、滑移-弯曲、平面旋转式滑移-拉裂、块体滑移、弯曲-倾倒(张倬元等,1994;黄润秋,2003;宋玉环,2011)。本文以G320上瑞线石头寨至水黄路口公路改造工程K2233+320~K2233+620段右侧软硬岩互层边坡为研究对象,首先确定边坡的潜在滑动面,然后对边坡的稳定性进行分析,最后针对该边坡剩余下滑力及地形特征提出支护方案。  相似文献   

17.
基于悬臂梁理论建立锚固力解析计算模型,以某薄层状反倾岩质边坡为实例,进行锚固力计算及相关参数敏感性分析,并以数值模拟加以对比分析。研究结果表明:此类边坡锚固力计算可划分为倾倒锚固区和滑动锚固区,其中倾倒锚固区折断深度和锚固力都随坡顶距增大而减小,且最大折断深度和最大锚固力对相关参数敏感性由大到小依次为:层厚、抗拉强度、层间内摩擦角。数值模拟中锚索轴力增量比随坡顶距增大而减小,与解析计算结果变化规律一致,且加固倾倒锚固区比加固滑动锚固区对于控制边坡水平位移效果更加明显。  相似文献   

18.
为了研究块裂反倾巨厚层状岩质边坡破坏机制及稳定性,基于PFC2D平行黏结模型和持续增加重力加速度方法,研究边坡破坏模式、应力-变形及能量耗散演化,并用临界重力加速度量化研究其稳定性。研究结果表明:边坡破坏模式主要有滑移、倾倒和溃屈破坏3类且随岩层倾角增大而逐渐转变;随岩块两相邻边长比l/h增大,边坡越倾向于发生倾倒破坏;滑移和倾倒破坏模式从坡脚向上坡体应力逐步达到峰值并峰后跌落,具有渐进破坏特征。而溃屈破坏模式坡体各部位应力呈捆绑型波动性塑性流动状态,具有大面积剧烈整体性破坏特征;随着岩层倾角(45°,60°,75°)增大,边坡临界重力加速度先减小再增大,稳定性在60°时最弱。边坡稳定性随岩块增大而增强,并主要受层间裂隙间距控制。  相似文献   

19.
岩溶和软弱层的存在对边坡稳定性有重大影响。为了揭示岩溶作用下复合边坡失稳机制,以富含岩溶区某变电站场区复合边坡为研究对象,通过三维地质建模技术对钻孔数据进行处理,从而准确获取多软弱岩层界面位置以及坡体内岩溶状态。结合AutoCAD软件生成拟研究边坡地质剖面,通过ABAQUS模拟软件与AutoCAD数据接口将典型地质剖面图导入有限元数值模拟软件中,从而构建含岩溶复合边坡数值模型。采用强度折减法分别分析了复合边坡在不含岩溶时、岩溶无充填时、岩溶被黏土充填时的失稳特征。模拟结果表明:多软弱层复合边坡岩层界面对坡体的稳定有决定性作用,坡体滑移破裂均源于岩层界面处,坡体沿岩层分界面剪切滑移贯通成圆弧状潜在破裂面。岩溶对边坡的影响主要由沉降变形引起,岩溶沉降较大时,边坡呈现垮塌为主和岩层界面剪切滑移为辅的破裂形式。理论上,在某些特定情况下,坡体内岩溶对边坡稳定性有积极作用。该研究结果对于指导含岩溶复合边坡防护设计具有重要意义。  相似文献   

20.
江习高速四面山隧道软硬互层围岩为近水平岩层,弹性模量比值为1∶5,黏聚力比值为1∶4,层理效应明显,且层理与隧道相对位置不一,对隧道开挖影响也不同。以砂泥互层V级围岩隧道施工段为工程依托,采用接触分析方法,研究层理与隧道相对位置关系对隧道变形影响,并进行变形预测,得出以下结论:(1)隧道开挖后,其拱顶沉降相对水平收敛变化更大,层理层间滑移相对层间剥离变化更明显。(2)隧道拱顶沉降受隧道上方层理影响最大,水平收敛受穿隧道层理影响最大,底鼓受隧道下方层理影响最大。(3)对于层理本身,隧道开挖对断面以上位置的层理影响更大,对其下方层理影响较小,层理位于隧道上方层理滑移最大,层理穿越隧道断面时层间剥离量最大。研究成果可在类似隧道提出针对性施工工艺设计建议并推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号