首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用压敏漆(PSP)实验技术测量某F级重型燃气轮机第一级透平静叶前缘和压力面的气膜冷却效率及叶片表面压力分布,初步检验静叶前缘和压力面的整体气膜冷却效果,探讨吹风比、密度比和供气方式等参数对前缘及压力面气膜冷却特性的影响。结果表明:前缘气膜孔采用交错布置,气膜冷却效率分布相对均匀,同时部分未被完全掺混的冷气在下游压力面产生气膜覆盖,随着吹风比增大,前缘冷却喷射在压力面的气膜覆盖范围增大且强度增强,由于受到叶栅通道涡的影响,气膜覆盖区域往下游向中间聚拢,形成气膜三角区;压力面逐排供气意在探讨各排孔在不同吹风比和密度比条件下的基本冷却特性,成型孔的布置使得冷却效率由吹风比主导,各排孔的气膜冷却效率随着吹风比增大而增大;相比于逐排供气,多排孔连供更接近于燃气轮机的真实运行环境,表征了各排孔相互干涉条件下的整体气膜冷却效率分布,多排联供使得冷气在下游逐渐形成累积,近尾缘区域之后表现得尤为明显,同时气膜冷却效率的累积特性基本符合"Shettle superposition"规律。  相似文献   

2.
叶栅环境下凹坑气膜孔的冷却特性研究   总被引:1,自引:0,他引:1  
气膜冷却技术在燃气轮机涡轮冷却叶片中得到了广泛的应用,其冷却性能与主流流动、冷气流动、孔型等相关.本文首先利用平板条件下凹坑孔的实验数据对所采用数值计算方法的有效性进行了验证,之后分别对叶片压力面、吸力面处的凹坑孔在不同吹风比下的冷却特性进行了研究,并与典型圆柱孔的冷却特性进行了对比.结果表明:无论在压力面还是吸力面,凹坑孔的面积平均冷却效率均高于圆柱孔,而总压损失系数均稍低于圆柱孔;随着吹风比的增大,压力面和吸力面处凹坑孔的总压损失系数也随之增大,而面积平均冷却效率并非随之单调增大;在任一吹风比下,吸力面处凹坑孔的面积平均冷却效率、总压损失系数均大于压力面处.  相似文献   

3.
为了研究气膜孔几何位置对旋流冷却特性的影响,建立了带有气膜孔的旋流腔冷却结构,利用流体动力学软件ANSYS CFX对比分析了有无气膜孔情况下旋流冷却性能的差异,并研究了气膜孔轴宽比和周向角度对旋流冷却流动和换热特性的影响。研究结果表明:气膜孔对旋流腔靶面旋流冷气运动产生强烈扰动,使气膜孔上游冷气流速增加,下游冷气流速降低;气膜孔使主流流线向斜下方偏转,增强了整体换热强度且整体压力分布趋于均匀;轴宽比从0.3增加到0.7,气膜孔对整体流动和传热影响不大,轴宽比增加到0.9,主流小旋涡消失且靶面Nu分布更均匀;周向角度小于0°时,随着周向角度的增加,气膜孔上游高速区增大,周向角度超过0°后,高速区随周向角度增长不明显;随着周向角度增加,周向平均压力系数增加,气膜孔附近高Nu区扩大,靶面高Nu区分布更均匀。  相似文献   

4.
为了深入研究压气机抽取的脉动冷气影响燃气涡轮动叶凹槽状叶顶的流动与冷却特性,采用数值求解三维非稳态雷诺时均N-S方程和标准k-ω湍流模型的方法,研究了考虑气膜冷却脉动特性的涡轮动叶凹槽状叶顶的气动和冷却性能。采用正弦函数描述动叶凹槽状叶顶中弧线等间距布置气膜冷却孔的冷气脉动特性,对比研究了3种脉动振幅和5种脉动频率的动叶凹槽状叶顶气膜冷却有效度和总压损失系数。研究结果表明:在一个脉动周期内,不同瞬时冷气的穿透能力和附着能力差异显著。气膜冷却冷气吹风比小幅值脉动时,脉动频率的提高改变了叶顶气膜冷却有效度变化曲线的相位,但对整体的冷却效果基本没有影响;冷气吹风比大幅值脉动时,脉动频率的增大略微提高了叶顶冷却性能,并且当脉动频率增大至最大值2 000 Hz时,受到延迟反馈效应的影响,脉动周期内气膜冷却有效度的最低值相比250 Hz时提高约50%。高温主流在冷气吹风比大幅值脉动时周期性入侵冷气管路,对叶顶中间弦长和尾缘处的气膜孔结构造成破环。气膜冷却冷气吹风比低频脉动时,动叶平均总压损失系数以正弦函数规律变化,不同瞬时的总压损失系数差异随冷气吹风比脉动幅值的增大而扩大,同时当脉动频率增加时,不...  相似文献   

5.
为了研究主流湍流度对涡轮导叶压力面扩张型气膜孔冷却特性的影响,在高亚声速风洞中进行了实验,通过热电偶测得了气膜孔排下游的气膜冷却效率和换热系数,叶栅进口雷诺数的范围为3.0×105~9.0×105,出口马赫数为0.8。两排单排扩张型气膜孔分别位于压力面25%和70%的相对弧长处,高低湍流度分别为14.7%和1.3%。实验结果表明:对于孔排1,随着吹风比的增大,气膜冷却效率在低湍流度时呈现先增后减的特征,而在高湍流度时单调提升;在相同吹风比时,主流湍流度升高增强了主流和冷气的掺混,加快了冷气的耗散从而降低了气膜冷却效率。对于孔排2,主流湍流度升高在小吹风比时使气膜冷却效率降低,而在大吹风比时抑制了冷气脱离壁面从而提高了气膜冷却效率。吹风比增大显著增强了孔排1下游的换热,而对孔排2影响较小;主流湍流度升高显著提高了孔排1和孔排2下游的换热系数比。整体来看,主流湍流度升高降低了孔排1和孔排2下游的气膜冷却效果。  相似文献   

6.
全气膜冷却叶片表面换热系数和冷却效率研究   总被引:10,自引:0,他引:10  
为了研究全气膜冷却涡轮导叶叶片的换热特性,采用瞬态液晶技术获得了叶片全表面的高分辨率换热系数和冷却效率.实验在三叶片两通道放大模型中完成,叶栅进口雷诺数是1.0×105. 叶片前缘有8排复合角孔,压力面有21排轴向角孔,吸力面有24排轴向角孔.气膜孔排由2个供气腔供气,前腔二次流与主流的质量流量比为4.56%,后腔为4.67%.结果表明:受叶栅通道涡作用,气膜出流在吸力面呈聚敛状,在压力面则呈发散状.气膜出流受气膜孔角度影响,气膜孔下游的换热系数和冷却效率都较高.叶片前缘受到冲击,换热强,冷却效率低;叶片吸力面冷却效率维持在0.4左右,压力面维持在0.35左右.该全气膜冷却叶片气膜覆盖效果较好,冷却效率和换热系数分布均匀,是一种较好的冷却结构.  相似文献   

7.
为研究连续收缩扩张孔的冷却特性,在C3X静叶片上分别建立了连续收缩扩张气膜孔冷却模型、圆柱气膜孔冷却模型和展向扩张气膜孔冷却模型,连续收缩扩张气膜孔每排23个、孔间距为20mm,展向扩张孔每排19个、孔间距为24mm,圆柱孔每排19个、孔间距为24mm。同时,在叶片前部开设了一个U形冷却通道,尾部开设了一个直冷却通道,冷气通过这2个内部冷却通道进入气膜孔。利用ANSYS-ICEM商用软件对上述3种模型进行了结构化网格划分,采用ANSYSCFX商用软件和SST湍流模型进行了数值计算和分析比较,结果表明:连续收缩扩张孔的气膜冷却效率高于圆柱孔和展向扩张孔,在孔口附近和高吹风比下的优势最明显;连续收缩扩张孔使冷气射流在相邻两孔的交汇处形成了类似反肾形涡结构,该涡的强度不大,但具有良好的延续性和较大的冷气覆盖面积;复合冷却时冷气射流脱离壁面的现象更明显,孔口附近总冷却效率低于绝热冷却效率。在连续收缩扩张孔的实际应用中选择偏大的吹风比和更小的入射角可以提高气膜冷却效率。  相似文献   

8.
为了研究高湍流度下圆柱孔流向倾斜角对气膜冷却特性的影响,在主流湍流度为11.82%的工况下,采用瞬态热色液晶测量技术对倾斜角为30°、60°的气膜孔冷却特性进行了研究,并与低湍流度工况下的结果进行对比。实验结果表明:气膜孔倾斜角增大会导致气膜冷却效率下降;主流湍流度增大会提高上游冷却效率,降低下游冷却效率,冷却效率展向分布更加均匀。吹风比的增加导致各倾斜角气膜孔换热系数比显著增加,在小吹风比条件下,换热系数比沿流向时降低,而大吹风比条件下换热系数比呈现先上升后下降的分布;气膜孔倾斜角增大会在整体上强化壁面对流换热强度,主流湍流度增加导致换热系数比明显减小。随着吹风比的增加,下游区域的主流湍流度导致两种倾斜角气膜孔的冷却效率和换热系数比差距增大,在上游区域主流湍流度的影响较为复杂。  相似文献   

9.
叶片全表面换热系数和冷却效率的实验测量   总被引:5,自引:1,他引:4  
采用瞬态液晶技术测量了涡轮导叶叶片全表面的换热系数和冷却效率.实验叶片前缘区域有5排复合角度圆柱形气膜孔,压力面有10排圆柱形孔,吸力面有2排圆柱形孔和2排扇形孔,气膜孔排由2个供气腔供气.实验叶栅由3个直叶片构成,叶栅进口雷诺数是1.1×105,前腔二次流与主流的质量流量比为5.87%,后腔为1.06%.实验测量获得了叶片表面换热系数和冷却效率的二维分布云图,结果表明:气膜孔下游的换热系数和冷却效率都较高;扇形孔下游的冷却效率比圆柱形孔的高;受叶栅通道涡的影响,吸力面气膜覆盖区域收缩,压力面气膜覆盖区域扩张;吸力面换热系数分布受气流分离和通道涡影响.  相似文献   

10.
采用流热固耦合方法数值研究了真实叶片材料热物性条件下叶片前缘冲击腔室内冷却射流的流动及换热特性。分析了冲击孔的偏置距离(2.5 mm、5.0 mm、7.5 mm和10.0 mm)及冲击冷气与主流的质量流量比(1.0%、1.5%、2.0%、2.5%和3.0%)对前缘面复合冷却性能、冲击靶面对流换热性能及吸力面气膜冷却性能的影响。研究表明:冲击孔偏置结构会对叶片前缘区域的冷却产生显著的影响,偏置距离较小时会削弱前缘面复合冷却性能及靶面对流换热性能,而偏置距离较大时能同时强化前缘面复合冷却性能及靶面对流换热性能,尤其是对靶面对流换热性能的提高效果非常显著。4个冲击孔偏置结构中,偏置距离最大的结构相较于无偏置结构的靶面平均努塞尔数最多提高了约33.97%;吸力面的气膜冷却性能大体上与冲击孔到吸力面气膜孔的周向距离呈现出负相关性,冲击孔距吸力面气膜孔越远,吸力面的气膜冷却性能越弱;相较于无偏置结构,冲击孔偏近及偏离气膜孔布置时吸力面平均气膜有效度最多分别提高了约5.56%和降低了约10.96%;当冲击冷气的质量流量比较小时,增大冷气的质量流量比能有效提高叶片前缘冷却性能。前缘面平均综合冷却效率、...  相似文献   

11.
为研究冲击孔位置对空冷涡轮叶片冲击/气膜复合冷却特性的影响,选择4种具有不同冷却结构的涡轮叶片开展了综合换热实验。实验叶片由低导热系数的树脂材料制成,分别为仅有气膜冷却结构的叶片0、具有正向冲击孔的叶片1、具有偏置冲击孔的叶片2以及具有交错偏置冲击孔的叶片3。使用红外热像仪拍摄得到实验叶片表面温度分布。实验结果表明,涡轮叶片综合换热特性由内部冷却和外部冷却共同决定。在吹风比较大时,射流冲击强化了冷却剂和叶片内壁面之间的换热,导致具有冲击冷却结构的叶片1、2、3相对于叶片0综合冷却效率提升了3.1%~6.7%。其中,因为冲击孔偏置,叶片2和3的冲击强化换热区域相对独立于叶片表面气膜覆盖区域,所以叶片2和3的综合冷却效率分布更为均匀,且大于叶片1。叶片0仅有气膜冷却结构,紧邻气膜孔出流位置冷却剂动能较大,在气膜孔出口下游冷却剂再贴壁形成热防护,使得距离气膜孔较远的区域冷却效率升高。在吹风比较小时:仅有正向冲击的叶片1相对于叶片0的综合冷却效率有所提高;由于偏置冲击消耗了更多了冷却剂动能,叶片2和3的综合冷却效率相对于叶片0明显降低,当吹风比为0.2时,二者分别下降了6.7%和11.6%。  相似文献   

12.
采用数值求解RANS方程的方法研究了典型燃气透平动叶凹槽叶顶的传热和气膜冷却性能,通过计算获得了3种叶顶间隙(1.31mm、1.97mm和3.29mm)、2种吹风比(1和2)、2种气膜孔分布(中弧线位置单排孔、中弧线+近压力面位置两排孔)条件下叶顶传热系数和气膜冷却有效度分布,并与实验结果进行了对比。结果表明:对于中弧线位置的单排气膜孔,冷却流可以对凹槽底部近压力面侧形成有效的冷却;随着吹风比的增大,凹槽底部靠近前缘吸力面侧的高传热系数区域减小,凹槽底部压力面侧的传热系数减小且气膜冷却有效度显著增大;随着叶顶间隙的增大,凹槽底部前缘吸力面侧的高传热系数区向压力面侧扩大,凹槽底部平均传热系数明显增大,凹槽底部近压力面侧和尾缘处的气膜冷却有效度减小。对于中弧线+近压力面两排气膜孔,近压力面气膜孔内的冷却流覆盖了凹槽肩壁和叶顶尾缘区域,且强化了凹槽底部靠近压力面侧的冷却性能;随着吹风比的增大,凹槽底部近压力面侧、肩壁和叶顶尾缘区域的传热系数明显减小,气膜冷却有效度明显增大;随着叶顶间隙的增大,凹槽底部吸力面侧高传热系数区域向压力面侧扩大,凹槽底部近压力面侧、肩壁和叶顶尾缘区域的传热系数显著增大,气膜冷却有效度减小。  相似文献   

13.
为了解前缘冷气喷射对透平叶片的气膜冷却特性,对圆柱形前缘双排交错孔气膜冷却进行了全三维N-S方程数值模拟,第一排孔射流角度分别为15°、20°和25°,第二排孔均为20°。计算域网格采用FNM(full non-matched)形式的多块结构化网格。研究了射流与主流的流动机理,分析了不同吹风比下不同孔排结构对壁面冷却效率的影响。计算结果表明:第一排射流角度的变化对前缘绝热效率分布的影响非常明显,壁面气膜冷却效率随吹风比的增大而升高。  相似文献   

14.
为了研究不同孔型对平板气膜冷却的影响,针对圆形,扇形,水滴形,收敛缝形四种气膜出流孔型的流动和传热特性进行了数值模拟。研究结果表明,圆形孔、扇形孔和水滴形孔气膜出口下游出现从中心向上抬升的反向旋转涡对,将主流燃气卷吸进来;收敛缝形孔在侧向的扩张型面使得气膜出流在展向的覆盖更为均匀,这有效地阻止了高温气体的侵入;在相同吹风比下,收敛缝形孔在气膜出口附近区域的平均绝热冷却效率则明显要高于其余三种孔,随着吹风比的增大,这种差距越发明显;孔型对对流换热系数增强比的影响区域仅局限在邻近气膜孔出口大约7倍气膜孔径的范围内。   相似文献   

15.
为改善燃气轮机热端部件的设计,使用压力敏感漆(PSP)技术对平板气膜冷却进行了实验研究。该技术基于压力敏感涂料氧猝熄光致发光特性,可进行表面压力和气膜冷却效率的测量。分别在不同温度和压力下对PSP的特性进行标定,并编写了实验后处理程序。实验给出了圆孔、扇形孔和扇形后倾孔3种孔型在吹风比为0.5、1.0和1.5时的气膜冷却效率分布。结果表明:圆孔在高吹风比时,冷却气流易吹离表面,冷却效果较差;扇形孔冷却效率随着吹风比的增加而增加,并具有较均匀的横向冷却分布;与扇形孔相比,扇形后倾孔增强了下游的冷气在孔中心线上的分布,减弱了其横向扩展。PSP技术具有分辨率高、可重复性好的特点,能有效用于气膜冷却流动和传热特性的研究。  相似文献   

16.
为了降低凹槽叶顶整体热负荷并提高高传热区的气膜冷却效率,研究了压力侧冷却射流对透平级凹槽叶顶冷却传热性能的影响。通过数值计算获得了2种压力侧气膜孔形状(圆孔、扩张孔)和5种压力侧射流角(20°~40°)条件下,透平级凹槽叶顶的传热系数和气膜冷却效率分布。研究表明:前缘压力侧冷却流进入凹槽,增强了凹槽底部的冷却效果;中部和尾缘压力侧冷却流对凹槽肩壁和叶顶尾缘进行了冷却,增强了叶顶高热负荷区域的冷却效果。在所研究的射流角范围内,射流角越小,凹槽叶顶的冷却效果越好。当采用扩张孔、射流角由20°增大到40°时,肩壁的面积平均传热系数增大了6%,面积平均气膜冷却效率减小了14.3%;叶顶压力侧的面积平均传热系数增大了36%,面积平均气膜冷却效率减小了37.2%。在小射流角条件下,扩张孔的叶顶和压力侧冷却效果优于圆孔。射流角为20°时,与圆孔相比:扩张孔使凹槽肩壁面积平均传热系数减小了2%,面积平均气膜冷却效率增大了5.9%;扩张孔使叶顶压力侧的面积平均传热系数减小了22.6%,面积平均气膜冷却效率增大了43.3%。  相似文献   

17.
为了设计一套满足传热及气动要求的涡轮叶片表面气膜孔方案,以某型涡轮第一级导叶为研究对象,对两种气膜冷却结构进行参数化设计。对冷却效果进行数值模拟,研究不同的气膜冷却方式在涡轮中对气动与叶片表面温度分布的影响。将两种冷却方式计算结果进行对比分析,结果表明:在相同边界条件下, 六列气膜孔结构可以减弱冷气射流冲量,减小与主流掺混时的损失,气动效率较四列气膜孔提高0.3%;六列气膜孔可增大冷气覆盖面积,同时有效防止射流穿透附面层进入主流,降低附面层扰动强度,削弱对上游气膜的影响,叶片表面无量纲温度降低了11.68%。  相似文献   

18.
周晨  丁亮  冯晓星 《科学技术与工程》2022,22(16):6734-6743
气膜冷却技术广泛应用于航空发动机火焰筒、涡轮叶片等热端部件的冷却。与常规圆柱形气膜孔相比,扇形气膜孔冷却效率更高。为更全面的掌握在典型大涵道比商用航空发动机燃烧室火焰筒工作环境下扇形气膜孔气膜冷却效率随几何参数和吹风比的变化规律,采用数值模拟方法研究了扇形气膜孔的流动和换热,分析并讨论了气膜孔板厚度、气膜孔出口宽度、气膜孔入口圆柱段长度、气膜孔倾斜角以及吹风比对扇形气膜孔下游流场和热侧面气膜冷却效率分布的影响。结果表明:在小吹风比条件下,几何参数的变化对冷却效率影响很小;而当吹风比较大时,冷却效率随几何参数的变化规律可能受其他几何参数的交叉影响;几何参数的变化将诱发不同的卵形涡结构,从而对气膜孔下游的冷却效率分布造成较大的影响。  相似文献   

19.
采用ANSYS-CFX商用软件对模化平板冲击发散冷却结构中的流动与换热特性进行了数值模拟,对比了有、无固体域时冲击发散冷却的冷却效率,分析了不同吹风比时气体的流动结构、涡强度、综合冷却效率和流动效率的变化,分析了固体导热系数对冷却效率的影响。结果表明:冲击发散冷却同时具有冲击冷却和气膜冷却的优点,可以有效保护壁面;当吹风比增大时,冲击冷却的效果增强,肾型涡强度增大,气膜冷却效果减弱,但冲击冷却的影响优于气膜冷却,所以其综合冷却效率仍然提高了;气膜冷却部分有最大的局部压力损失系数,当吹风比增大时,总压力损失系数增大,流动效率下降;当固体导热系数增大时,冲击冷却的影响增大,综合冷却效率提高。该结果可为进一步冷却燃气轮机内工作部件提供参考。  相似文献   

20.
为研究尾迹影响下带有复合角扇形孔的涡轮叶片的气膜冷却效率变化规律,利用压敏漆技术获得了不同质量流量比、不同尾迹斯特劳哈尔数(0、0.12、0.36)下的涡轮叶片表面气膜冷却效率分布。研究结果表明:气膜孔复合角有利于射流的横向扩散,孔下游射流的覆盖面积较大;在无尾迹条件下,质量流量比的增加使得带有复合角气膜孔的涡轮叶片前缘与压力面大部分区域的气膜冷却效率提高,使得吸力面气膜冷却效率下降,吸力面靠近叶顶的低气膜冷却效率区域面积变小;在尾迹条件下,质量流量比的增加使得前缘、压力面以及吸力面靠近尾缘区域的气膜冷却效率提高,使得吸力面其他区域的气膜冷却效率降低;尾迹会使叶片表面气膜冷却效率显著降低,在尾迹斯特劳哈尔数为0.36的条件下,小质量流量比时叶片表面气膜冷却效率的平均降幅为35%,大质量流量比时平均降幅为26%,气膜冷却效率的下降幅度减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号