首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
以4A和13X分子筛为吸附材料,考察废水pH值和Cd2+初始浓度等对Cd2+去除率的影响,并研究了分子筛对Cd2+的吸附性能。结果表明,4A和13X分子筛投加量为0.16g/L、废水pH值为5、Cd2+浓度为20mg/L时,Cd2+去除率达到95%以上;分子筛对Cd2+的去除机理以离子交换吸附为主,交换出来的Na+与分子筛吸附的Cd2+摩尔浓度比为2;在吸附热力学和动力学方面,4A和13X分子筛均符合Langmuir吸附等温模型和Lagergren二级速率方程,计算的饱和吸附容量Q0分别为150.15、163.67 mg/g,二级反应速率常数K2分别为2.45×10-3、3.96×10-4 g/(mg·s)。该吸附反应是一种单分子层反应速度较快的化学吸附过程。  相似文献   

2.
【目的】以马尾藻粉为生物吸附剂,研究其在静态实验中对Cd2+和Ni 2+的吸附及脱附能力,并对吸附速度、动力学、重金属选择性和吸附剂再生等问题进行探讨。【方法】采用单因素法分析pH值、初始浓度、平衡离子类型等条件因素对重金属吸附容量的影响,采用准一级和准二级动力学模型对Cd2+、Ni 2+的吸附数据进行拟合。【结果】Cd2+的最佳吸附条件为pH值4.5、初始浓度500mg/L、平衡离子为NO3ˉ,Ni 2+的最佳吸附条件为pH值3.0、初始浓度900mg/L、平衡离子为Clˉ;Cd2+、Ni 2+的吸附平衡到达时间分别为50min和25min;准二级动力学模型对吸附数据的拟合效果更好,相关系数(R2)均大于0.99;对混合溶液中不同重金属的选择性吸附顺序为Pb2+Ni 2+Cd2+Mn2+;1.0mol/L HCl对Cd2+、Ni 2+的理论洗脱率均可达到99%。【结论】马尾藻粉对Cd2+和Ni 2+的吸附容量大,吸附条件温和,重金属脱附率高,是一种性能良好的生物吸附剂。  相似文献   

3.
为了能以更有效更经济的方法去除废水中的Ni(Ⅱ),选用成本低廉的大豆秸秆制备生物炭作为吸附剂,研究了炭化温度、溶液pH、吸附剂投加量、溶液温度、Cd(Ⅱ)质量浓度对吸附效果的影响,得到了最佳的吸附条件,开拓了去除重金属镍的新方法,同时研究了生物炭对Ni(Ⅱ)的吸附动力学和吸附等温线。实验表明,大豆秸秆生物炭对Ni(Ⅱ)有较好的吸附性能,Ni(Ⅱ)质量浓度为20mg/L,炭化温度为500℃,pH为7,投加量为0.2g,室温为25℃,Cd(Ⅱ)质量浓度为0为最佳吸附条件。吸附反应符合准二级动力学方程。吸附等温线符合Langmuir模型,25℃时饱和吸附量为14.38mg/L。扫描电镜分析显示,炭化使得秸秆孔道结构增多,表面粗糙程度加剧,比表面积增大,从而提高了吸附性能。  相似文献   

4.
改性柿子粉吸附剂对Cd2+的吸附性能   总被引:2,自引:0,他引:2  
以柿子粉为基体,经丙酮和硫酸缩合改性处理制备柿子生物吸附剂,并对柿子生物吸附剂和原始柿子粉进行红外光谱分析,考察柿子生物吸附剂吸附Cd2+的影响因素如初始pH、温度、时间等,研究吸附动力学、等温吸附模型以及吸附剂的循环再生性能.研究结果表明:改性处理增加了对重金属离子有吸附作用的活性官能团数目并降低了柿子粉的水溶性;柿子生物吸附剂对Cd2+的吸附过程可以很好地用准二级动力学方程描述;吸附等温线均符合Langmuir和Freundlich方程;改性柿子生物吸附剂对Cd2+的最大吸附量为82.78 mg/g.  相似文献   

5.
以橘子皮(OP)为原料通过MgCl2改性制备新型橘子皮吸附剂MgOP.考察溶液pH、固液比、温度、吸附时间和金属离子质量浓度对其从水溶液中吸附Cd2+和Ni2+的吸附性能的影响.采用扫描电镜及红外光谱仪对吸附剂进行表征.MgOP对2种金属离子的吸附率随pH和固液比的增大而增大;温度对吸附率的影响较小;吸附速度很快,能在20 min内达到吸附平衡.MgOP对Cd2+和Ni2+的吸附动力学均符合准二级动力学方程;MgOP对Cd2+和Ni2+的的Langmuir最大吸附量分别为125.47和44.58mg/g.  相似文献   

6.
皂化交联改性橘子皮生物吸附剂对Cu2+的吸附   总被引:4,自引:0,他引:4  
以生物废料橘子皮(OP)为原料,经乙醇、氢氧化钠和氯化钙处理,得到2种改性橘子皮生物吸附剂SOP和SCOP,并将它们用于对Cu2+的吸附.研究溶液pH值、吸附剂用量、吸附时间和Cu2+初始质量浓度对SOP和SCOP吸附性能的影响.结果表明:Cu2+在橘子皮生物吸附剂上的吸附速率快,可以用准二级动力学方程描述.SOP和SCOP对Cu2+的吸附等温线符合Langmuir模型,根据Langmuir模型计算SOP和SCOP饱和吸附量,分别为50.17 mg/g和72.73 mg/g,高于未改性的OP饱和吸附量(44.28 mg/g).改性后的橘子皮生物吸附剂可以再生重复使用5次以上.橘子皮经过改性处理后,化学稳定性提高,吸附能力增强,是性能良好的Cu2+吸附剂.  相似文献   

7.
以罗望子胶原粉(TKP)为基料,氯乙酸钠(SMCA)为羧甲基醚化剂,环氧氯丙烷(ECH)为交联剂制备了取代度(DS)为0.42,0.64和0.88的3种交联羧甲基罗望子胶(CCMTKP),探究其对水溶液中Cd2+的吸附行为。结果表明:适宜吸附的pH值范围为2~6;吸附剂较佳用量为0.5%(质量分数);3种CCMTKP对Cd2+的吸附在15min内达到平衡,遵从二级动力学方程;吸附符合Langmuir等温吸附,CCMTKP对Cd2+的最大吸附量为64.10mg/g;再生后的CCMTKP吸附性能良好,脱吸附率高,有望作为Cd2+的吸附剂使用。  相似文献   

8.
剩余活性污泥胞外聚合物对水中Cd2+和Zn2+的吸附效能   总被引:2,自引:0,他引:2  
以占剩余活性污泥质量80%的胞外聚合物(extracelluar polymeric substances,EPS)作为新型吸附剂,考察了pH、EPS投加量和吸附时间对其在水中吸附Cd2 与Zn2 的性能的影响,以达到剩余活性污泥的资源化利用.结果表明:Cd2 和Zn2 的最佳吸附条件为:pH=6,EPS的最佳投加量分别为375mg/L和250 mg/L,Cd2 和Zn2 的吸附率分别达到36%和51%.EPS对Cd2 和Zn2 的吸附过程均可分为两个阶段,分别在90 min和60 min时达到吸附平衡.离子共存实验发现,EPS对Cd2 的选择吸附性强于Zn2 ;Freundlich和Langmuir方程均可描述EPS在常温下吸附Cd2 的热力学过程;而Zn2 的吸附等温线与Langmuir方程拟合更好.拟合系数显示,EPS对Zn2 的吸附稳定性、吸附能力和亲和力均比对Cd2 的吸附强.表明剩余活性污泥EPS作为吸附剂前景广阔,具有更深的研究价值.  相似文献   

9.
从蒙脱石的提纯入手,进行了蒙脱石吸附Cu2+实验研究,结果表明蒙脱石对水中Cu2+的吸附性能主要受振荡速度、吸附时间、溶液pH值及吸附剂用量等因素的影响,30℃时蒙脱石对水中Cu2+的吸附等温曲线同时符合Langmuir方程和BET方程.在本实验条件下,蒙脱石对Cu2+(20 mL,Cu2+质量浓度均为50 mg/L)的最佳吸附工艺条件为振荡速度50 r/min,吸附时间60 min,吸附剂用量0.08 g,溶液pH为6.0,此时去除率达到99.2%.  相似文献   

10.
以壳聚糖、海藻酸钠为原料,环氧氯丙烷为交联剂制备了交联壳聚糖/海藻酸钠吸附剂,并采用红外光谱对其结构进行了表征.考察了吸附时间、pH值、吸附剂用量和交联度等因素对吸附容量的影响,研究了该吸附剂的吸附性能,同时对吸附动力学进行了研究.结果表明:pH值为4.0~6.0、吸附时间为120min、在100mL 50mg/L的Cu2+溶液中吸附剂的投加量为0.10g时,平衡吸附容量达46.4 mg/g;该等温吸附在低浓度时的吸附过程较符合Freundlich模型,在高浓度时较符合Langmuir模型;吸附过程动力学符合拟二级动力学方程,线性相关性良好(r2=0.944 4).  相似文献   

11.
高吸水树脂对重金属盐溶液的吸液及吸附性能   总被引:1,自引:0,他引:1  
高吸水树脂由于含有-COOH、-NH2、-SO3H,对重金属离子有较强的吸附性.探讨不同基团树脂对重金属离子吸附性能的影响,结果表明:二元树脂对重金属离子吸附效果最好,树脂对单一重金属离子吸附能力的大小顺序为Cd2+> Cu2+ >Ni2+ >Pb2+,最大吸附容量依次为331.80、182.82、165.79、23....  相似文献   

12.
 利用CaCO3对硅藻土矿物进行改性. 研究结果表明: 单组分体系中CaCO3改性的硅藻土对Cu2+,Pb2+,Cd2+和Zn2+的吸附动力学规律均符合伪二阶动力学模型, 吸附热力学规律符合Langmuir模型; 在混合组分体系中, Pb2+,Cd2+和Zn2+的吸附速率降低, Cu2+的吸附速率增加, 对金属离子的吸附动力学规律仍然符合伪二阶动力学模型, 但对金属离子的吸附量均明显降低, 仅Pb2+的吸附热力学规律符合Langmuir模型.  相似文献   

13.
为解决当前重金属离子废水处理工艺繁琐、费用居高不下等问题,采用廉价的改性油酸作为液体吸附剂吸附废水中的重金属,并借助正交试验方法研究了温度、初始铜离子浓度、吸附时间及油酸改性条件对吸附效果的影响,得出了吸附等温线和最佳吸附条件。结果表明,当初始铜离子质量浓度为100 mg/L,吸附时间40 min,温度40℃,油碱质量比20∶1时,废水中铜离子的去除率可达99%以上,处理后的废水能够达标排放或回用;吸附后油酸能够用酸再生并得到硫酸铜。  相似文献   

14.
探讨了吸附时间、溶液pH、重金属离子初始质量浓度、离子强度以及竞争吸附等因素对天然高岭土吸附水中Pb2+,Cd2+,Ni2+,Cu2+等重金属离子的影响.结果表明,pH、初始质量浓度、离子强度以及共存离子,是影响高岭土吸附重金属离子的主要因素;高岭土对Pb2+的吸附性能明显优于其它3种重金属离子,顺序为:Pb2+>Cd2+>Ni2+>Cu2+;吸附等温线均符合Freundlich型等温方程,说明高岭土对这几种离子都是典型的单分子层吸附;Pb2+,Cd2+,Ni2+,Cu2+离子解吸量大小顺序为:Pb2+<Ni2+<Cu2+<Cd2+.  相似文献   

15.
利用玉米秸秆制备生物炭,进行吸附重金属Cd~(2+)和Pb~(2+)试验,分析生物炭吸附重金属的吸附量及吸附效率.试验结果表明:Cd~(2+)的最优吸附条件是pH为5,120 min吸附平衡.Pb~(2+)的最优吸附条件是pH为1,60 min吸附平衡;生物炭对养殖废水中Pb~(2+)和Cd~(2+)具有较好的吸附效果,吸附去除率分别为85%和98%,生物炭对Pb~(2+)的吸附效果明显优于Cd~(2+);Cd~(2+)和Pb~(2+)在秸秆生物炭表面上的吸附过程符合Freundlich等温吸附模型.  相似文献   

16.
Batch experiments were conducted to investigate the behavior and mechanisms for the adsorption of Cd(Ⅱ) from aqueous solutions by tourmaline under acidic conditions. The results indicated that the adsorption of Cd(Ⅱ) significantly depend on the adsorption time, temperature, and the initial concentration of the metal ion. Furthermore, tourmaline had a very good adsorption capacity for Cd(Ⅱ) in acidic, neutral and alkaline aqueous solutions. This good adsorption capacity is attributed to the observation that tourmaline can automatically adjust the pH values of acidic (except pH 2.0 and 3.0), neutral or alkaline aqueous solutions to 6.4. Specifically, the removal capacity for Cd(Ⅱ) was higher at strongly acidic pH values (in contrast to industrial wastewater pH values) compared to that obtained for other types of adsorbents. Furthermore, the results obtained in this study showed good fits to the Langmuir and Freundlich adsorption isotherms. However, the Langmuir model fit better than the Freundlich model. The maximum uptake of Cd(Ⅱ) by tourmaline was 31.77, 33.11 and 40.16 mg/g at pH 4.0 at 15, 25 and 35°C, respectively. Therefore, tourmaline is an effective adsorbent for the removal of Cd(Ⅱ) from acidic aqueous solutions. In addition, the kinetics for the Cd(Ⅱ) adsorption by tourmaline closely followed the pseudo-second-order model. The thermodynamic parameters indicated that adsorption was feasible, spontaneous, and endothermic. Furthermore, the pH variation after adsorption, ζ-potential, metal ions desorbed and released, and FT-IR analysis indicated that the physisorption and chemisorption mechanisms of tourmaline for heavy metals. These mechanisms included water that was automatically polarized by tourmaline, the ion exchange process, and electropolar adsorption. Among the mechanisms, the automatic polarization of water caused by tourmaline is a unique adsorption mechanism for tourmaline.  相似文献   

17.
轮叶黑藻(Hydrilla verticillata)干粉对重金属吸附特征的研究   总被引:3,自引:0,他引:3  
研究了不同pH值、反应时间、反应温度以及重金属质量浓度条件下,轮叶黑藻(Hydrilla verticillata)植物干粉对重金属(Cu、Cd、Pb、Zn)的吸附影响,阐述了其对重金属的吸附特征及机理.结果表明,不同pH值、反应时间和反应温度条件下,轮叶黑藻植物干粉对重金属的去除率依次为Pb(Ⅱ)Cd(Ⅱ)Zn(Ⅱ)Cu(Ⅱ),吸附的Langmuir模型中R2变化范围非常大,而Freundlich模型中R2多大于0.9.该吸附过程很好地符合Lagergren二级动力学方程,而一级方程的R2基本小于0.5,表明吸附过程不是简单的单分子层吸附,整个吸附过程中颗粒内扩散机理在起着支配作用.FTIR图谱显示,植物干粉各组分吸附重金属前后的基本峰形没有改变,只有羟基(3 300~3 400 cm-1处强宽吸收峰)、羧基(1 400~1 440 cm-1)、酰胺基(1 620~1 645 cm-1)等吸收峰发生了不同程度的位移.  相似文献   

18.
为了脱除鲍鱼多糖中的Hg(II)、Pb(II)、Cd(II),利用廉价、易得的贝壳粉(oyster shell,OS)功能化聚氨酯泡沫(polyurethane,PU),得到吸附重金属离子的复合材料PU/OS;利用火焰原子吸收光谱法,研究OS添加量、pH值、吸附时间对PU/OS吸附重金属离子的影响,并结合吸附动力学和吸附等温曲线探讨了吸附机理。结果表明,在温度为45 ℃、pH=5.0、平衡时间为180 min的吸附条件下,PU/OS对Hg(II)、Pb(II)、Cd(II)的最大吸附容量分别达到54.62,57.80,82.64 mg/g,吸附遵循准一级动力学模型和Langmuir等温吸附模型,吸附过程为单分子层吸附。利用PU/OS处理鲍鱼多糖后,PU/OS对Hg(II)、Pb(II)、Cd(II)的脱除率分别为59.61%,73.17%,85.71%,对其中的多糖、氨基态氮、蛋白质的保存率分别为83.66%,72.50%,83.21%。结果说明,PU/OS可有效降低鲍鱼多糖中Hg(II)、Pb(II)、Cd(II)的残留量,保障鲍鱼多糖的食用安全性。  相似文献   

19.
重金属离子对水质及其应用有着严重的影响,开发高选择性及灵敏度的重金属离子检测平台在水资源保护中有着重要的意义。采用4-巯基苯甲酸功能化金纳米粒子为载体制备的表面增强拉曼(SERS)溶胶基底,对水溶液中Pb~(2+)、Cd~(2+)、As~(3+)等重金属离子具有较强的选择性和较高的灵敏度。实验发现,SERS基底对Pb~(2+)、Cd~(2+)和As~(3+)的拉曼检测光谱在1 047、1 075、1 587cm~(-1)附近有着明显的振动频带位移及峰强变化。通过对溶胶基底优化得到了性能优异的增强基底,能够实现对3种重金属离子的区分,对重金属的检出限可达0.1mg/L,并在0.5~100mg/L范围呈线性关系,并成功的对真实水样中Pb~(2+)进行了加标验证实验。该基底提供了一个快速、便捷的重金属鉴别检测方法,且具有较好的增强效果和重金属定量分析能力,为水中重金属离子的高效检测提供了有效手段。  相似文献   

20.
以城市污水处理厂剩余污泥为原料,热解制备生物炭基质,经Fe2+/Fe3+改性加载纳米级铁氧化物颗粒,得到新型磁性生物炭材料(MBC),用于水体中重金属离子吸附.利用VSM,SEM-EDS,XRD,FTIR等综合分析磁性生物炭材料的物理化学特性,结果表明:生物炭基质表面加载磁性γ-Fe2O3颗粒,分布均匀,其饱和磁化强度达13.53Am2/kg.磁性生物炭投加量1.25g/L、吸附时间24h、水体pH为5.0时,Cu2+吸附量为67.68mg/g,较生物炭基质吸附量增加60.08%.磁性生物炭吸附过程符合Langmuir吸附等温线、准二级吸附动力学模型.污泥基磁性生物炭吸附效果显著,兼具便于从水体中分离的优势,可实现“以废治废”的环保目标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号