首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BiOClxBr1-x catalysts were synthesized through an alcoholysis method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and diffuse reflectance spectroscopy (DRS). The as-prepared photocatalysts were found to be tetragonal crystal structure and lamellar plate morphology. Their band gaps were between 3.44 and 2.83 eV. The effect of light response on the photocatalytic activity of BiOClxBrl-x was investigated by degradation of Rhodamine B (RhB). Complete removal of RhB from water was realized under simulated sunlight irradiation for 50 min with BiOC10.5Br0.5. Mechanism studies showed that photo- generated holes and superoxide anion radicals played important roles in RhB photodegradation. The results of chemical oxygen demand (COD) confirmed RhB mineralization. The effect of light response on the activity of BiOClxBr1-x was further investigated under monochromatic light irradiation, and BiOCl0.5Br0.5 catalyst exhibited the highest activity. Furthermore, BiOC10.5Br0.5 exhibited high stability, suggesting its practical application for the removal of RhB pollutant from water.  相似文献   

2.
A new composite photocatalyst AgBr/BiOBr was prepared by loading AgBr on a BiOBr substrate via deposition-precipitation and characterized by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectroscopy.The as-prepared AgBr/BiOBr comprised face-centered cubic AgBr and tetragonal BiOBr particles.The average crystalline sizes of AgBr in the AgBr/BiOBr composites were less than 28.5 nm.The absorption edges of AgBr/BiOBr in visible-light region had a red shift with increasing AgBr content.Photocatalytic degradation of methyl orange results show that the AgBr/BiOBr composites could degrade methyl orange efficiently under visible-light irradiation (λ>420 nm).The optimal molar percentage of AgBr was 50 mol% with corresponding maximum k app of 0.00619 min -1.Active ·O 2- played a major role for methyl orange degradation while h + and ·OH had little effect on the photocatalytic process.The enhancement of photocatalytic activity of AgBr/BiOBr is mainly ascribed to the heterojunction effect between AgBr and BiOBr.  相似文献   

3.
Poly(3,4-propylenedioxythiophene)/nano-Zinic Oxide(PProDOT/ZnO) composites with the content of 3-7 wt%nano-ZnO were synthesized by the solid-state method with FeCl3 as oxidant.The structure and morphology of the composites were characterized by Fourier transform infrared(FTIR)spectroscopy,ultraviolet-visible(UV-vis) absorption spectroscopy,X-ray diffraction(XRD) and transmission electron microscopy(TEM).The electrochemical performances of the composites were investigated by galvanostatic charge-discharge,cyclic voltammetry and electrochemical impedance spectroscopy(EIS).The photocatalytic activities of the composites were investigated by the degradation of methylene blue(MB) dyes in aqueous medium under UV light irradiation.The results from FTIR and UV-vis spectra showed that the PProDOT/ZnO composites were successfully synthesized by solid-state method,and nano-ZnO had great influences on the conjugation length and oxidation degree of the polymers.Furthermore,the PProDOT/5 wt%ZnO had the highest conjugation and oxidation degree among the composites.The results of XRD analysis indicated that there were some FeCl4- ions as doping agent in the PProDOT matrix,and the content of ZnO had no effect on diffraction pattern of PProDOT.Morphological studies revealed that the pure PProDOT and composites had similar morphological structure,and all the composites displayed an irregular sponge like morphology.The results of electrochemical tests showed that the PProDOT/5 wt%ZnO had a higher electrochemical activity with a specific capacitance value of 220 F g-1 than others.The results from photocatalytic activities of the composites indicated that the PProDOT/5 wt%ZnO had better photocatalytic activity than other composites.  相似文献   

4.
The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precursors in this paper. The properties of as-synthesized materials were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), diffuse reflectance spectroscopy (DRS), and ultraviolet-visible (UV-Vis) spectroscopy. The effects of irradiation time, methylene blue (MB) concentration, catalyst dosage, and pH value upon the degradation of MB were studied. Magnetic properties of the samples showed that both as-synthesized Fe/FeS photocatalysts are magnetically recoverable, eliminating the need for conventional filtration steps. Degradation of 5 ppm of the MB solution by mechano-thermally synthesized Fe/FeS with a photocatalyst dosage of 1 kg/m3 at pH 11 can reach 96% after 12 ks irradiation under visible light. The photocatalytic efficiency is higher in alkaline solution. The kinetics of photocatalytic degradation in both samples is controlled by a first-order reaction. However, the rate-constant value in the thermally synthesized Fe/FeS photocatalyst sample is only 1.5 times greater than that of the mechano-thermally synthesized one.  相似文献   

5.
Nanoscale titanium dioxide functional films were prepared on the surface of the cotton woven fabric and the polyester knitted fabric at room temperature by Radio Frequency (RF) magnetron sputtering process. The surface microstructure and morphology were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). Photocatalytic property of two treated fabrics was tested in solar and ultraviolet (UV) radiation respectively, and their photocatalytic activity was compared. The results showed that the nanoscale titanium dioxide deposited on the surface of the treated fabrics was at different anastasia phase. The treated fabrics have excellent photocatalytic property, and after 30 launderings, the photocatalytic activity still maintained at a high level. Also, it indicated that the photocatalytic activity of the treated fabrics in UV radiation was higher than in solar radiation, but the effect wasn't very distinct. And at the same experimental magnetron sputtering parameters, the cotton coated with the nanoscale titanium dioxide showed better performance than the polyester fabric coated with the nanoscale titanium dioxide in terms of the photocatalytic property.  相似文献   

6.
Polyaniline (PANI) based nanocomposites filled with ZnO nanorods were prepared by the chemical oxidative method of the aniline in acid medium with ammonium peroxydisulphate (APS) as an oxidant. The composition, morphology and structure of the polymer and the nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV–vis spectroscopy and electrical conductivity. The characteristic FTIR peaks of PANI were found to shift to higher or lower wave number in PANI–ZnO composites due to formation of H-bonding. Different amounts of ZnO nanorods were used to verify this effect on the characteristics of the synthesized materials. These observed effects have been attributed to interaction of ZnO nanorods with PANI molecular chains. XRD results revealed that the crystallinity of PANI was more pronounced after addition of nanorods, while the intensity of the peaks increased by addition of ZnO nanorods. Electrical conductivity of the PANI–ZnO nanocomposite film was found to be smaller than that of the PANI film. The decrease of electrical conductivity in PANI–ZnO films as compared to PANI was attributed to the interfaces formed between oxygen of ZnO nanorods and hydrogen of PANI. Also, TGA results showed that the decomposition of the nanocomposite was less than that of pure polyaniline which confirms the successful fabrication of products. These conductive polymers can be used in commercial paints as an additive.  相似文献   

7.
N-doped TiO2 nanocrystals were prepared using titanium alkoxide as precipitant with different proportional materials. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectra. It is confirmed experimentally that the photocatalytic activity of N-doped TiO2 is much higher than that of Degussa P25, when used for the degradation of crystal violet. The degradation kinetics follows an apparent first-order reaction, which is consistent with a generally observed Langmuir-Hinshelwood mechanism. The doping of TiO2 with nitrogen significantly increases the absorption in the region of visible light. The energy of the band gap of N-doped TiO2 is 2.92 eV. The better performance of N-doped TiO2 can be explained by the fact that it is also excited with longer-wavelength light.  相似文献   

8.
1 Results YFeO3-TiO2 composite photocatalysts with p-n heterojunction have been prepared by physical amalgamation.The physical and photophysical properties of the composites were characterized by XRD,TEM,UV-vis/DRS,XPS.Effects of calcination temperature and constitute content on structure and surface characterization were also investigated.Results show that the presence of p-n junction not only has visible light harvesting but potential force for hole-electron pair separation.A preliminary investigation of photocatalytic activity on orange II showed that YFeO3-TiO2 heterojunctions could be activated under visible light irradiation.The optimum photocatalytic junction is w(TiO2) =90% in the composites after calcining at 600 ℃.The improved photocatalytic activity,comparing with that of pure TiO2 and pure YFeO3,might attribute to the p-n heterojunction composed of p-type YFeO3 and n-type TiO2.Study of the process of electron and hole migratation will facilitate the exploitation of novel,highly efficient,visible-light-driven photocatalyst.  相似文献   

9.
4 wt% CuO–96 wt% TiO2 granules were prepared by a spray drying process. The microstructure and optical property of CuO–TiO2 granules were studied. The results indicate that copper existed in the form of CuO. The spray dried granules possess spherical geometry and smooth surface with grain size in the range of 40–80 μm. CuO–TiO2 has a relatively smaller E g value(2.85 eV) than Ti O2(3.17 eV). The photocatalytic property of CuO–TiO2 granules was investigated by degradation of a model pollutant(the azo dye methyl orange) under the irradiation of the xenon lamp equipped with a band pass fi lter of 365 nm. The CuO–TiO2spray-dried granules degrade about 10% more MO than TiO2spray-dried granules under UV irradiation within the same time. The XPS spectra suggested that Cu2 tand reduced copper species were coexistent in reacted CuO–TiO2 photocatalyst. The improvement of photocatalytic activity for CuO–TiO2 was mainly attributed to effective separation of photogenerated electron–hole pairs in the presence of CuO.  相似文献   

10.
Vertically aligned ZnO nanorods were successfully grown on porous silicon(PS) substrates by chemical bath deposition at a low temperature.X-ray diffraction, field-emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM), and photoluminescence(PL)analyses were carried out to investigate the effect of growth duration(2 h to 8 h) on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO(0 0 2) peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the Zn O nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.  相似文献   

11.
A novel nano-heterostructure of Ag I/Bi_2MoO_6 photocatalyst was successfully synthesized via a facile depositionprecipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi_2MoO_6 or Ag I showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi_2MoO_6 composite with an optimal content of 20 wt% Ag I exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi_2MoO_6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants.  相似文献   

12.
Hybridization of Mg-doped ZnO and reduced graphene oxide(MZO–RGO) were synthesized through one pot reaction process. Crystallization of MZO–RGO upon thermal decomposition of the stearate precursors was investigated by X-ray diffraction technique. XRD studies point toward the particles size with 10–15 nm,which was confirmed by transmittance electronic microscopy,and also indicates that graphene oxide has been directly reduced into its reduced state graphene during the synthesis. Graphene hybridized MZO photocatalyst showed enhanced catalytic activity for the degradation of methylene blue(MB). The degree of photocatalytic activity enhancement strongly depended both on the coverage of graphene on the surface of MZO nanoparticles and the Mg doping concentration. The sample of 2 wt% graphene hybridized 5 at% Mg-doped ZnO showed the highest photocatalytic activity,which remained good photocatalytic activity after nine cycling runs.  相似文献   

13.
Chain-like MoS2assemblies consisting of hexagonal MoS2nanoparticles(20-60 nm) have been successfully synthesized in a Triton X-100/cyclohexane/hexanol/water W/O reverse microemulsion in the presence of(NH 4)2MoS 4 as the molybdenum source and NH2OH·HCl as the reducing agent.The products were characterized by X-ray powder diffraction(XRD),transmission electron microscopy(TEM) and UV-vis diffuse reflectance absorption spectra.The influence of synthetic parameters such as acidity,water/oil ratio(0),aging time and annealing temperature on the formation of MoS2assemblies was investigated.TEM analysis showed that these synthetic factors played important roles in controlling the size of MoS2nanoparticles and the length of the chain-like MoS2assemblies.XRD analysis indicated that the well-crystallized MoS2nanoparticles could be obtained by annealing the precursors at 700 C for2h under a flow of N2atmosphere.In addition,the as-prepared chain-like MoS2nanoparticles exhibited excellent photocatalytic H2activity in Ru(bpy) 3 2+-MoS2-H2A three-component molecular systems under visible light irradiation.  相似文献   

14.
We studied the coating of C60 nanorods with nickel by electroless plating method and investigated their magnetic properties. The morphology and structure of the nickel layer coated on C60 nanorods were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Raman spectroscopy. The coated nickel is in the form of nano-sized crystals and becomes a continuous layer as reaction time increases. The hysteresis loop shows a super paramagnetic characteristic similar to that of nanometer-sized nickel particle. These results suggest that the average size of nickel particles on C60 rods is below 10 nm. Our study has shown that electroless plating is an efficient and simple method for coating C60 nanorods with nickel.  相似文献   

15.
In this study, ZnO nanotube and nanorod array films were respectively synthesized directly on F-doped SnO2 glass substrate (FTO) using a direct electrodeposition from a simple aqueous zinc salt solution. The effects of potential value, electro-deposition mode and solution stirring speed on the product morphology were investigated. Controlling the reaction under poten-tiostatic condition of -0.7 V at stirring speed of 300 r/min, large-scale nanotube arrays perpendicular to the substrate can be synthesized at a low temperature of 70 ℃. By varying the reaction parameters, we can also obtain ZnO nanorod arrays. The results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy have been provided to characterize the structure and morphology of the nanotube and nanorod arrays. Experiment results show that the as-obtained ZnO has a single crystalline structure and c-axis oriented direction. The room-temperature photolu-minescence spectrum of the ZnO nanotube array film displayed its high crystal property available as a photonic material. Electrodeposition is an effective method to prepare ZnO nanotube array films in quantity.  相似文献   

16.
Nanosized TiO2 particles were prepared by solvothermal method using tetrabutyl titanate as precursor,ethanol and water as solvents,and a facile immobilization method of nanosized TiO2 particles on woven glass fabric was developed. The samples obtained under various preparation conditions were charac-terized by means of thermo gravimetric analysis(TG) and differential scanning calorimetry(DSC) ,X-ray diffraction(XRD) ,transmission electron microscopy(TEM) ,high resolution-transmission electron mi-croscopy(HR-TEM) ,and Brunauer-Emmett-Teller(BET) . The results show that the cube-shape of TiO2 prepared by solvothermal method has good crystallinity of(101) surface,higher thermal stability and large specific surface area. Scanning electron microscopy(SEM) images confirmed that the immobi-lized TiO2 film was uniformly distributed and clung to the substrate firmly. The photocatalytic activity of the catalysts was tested using photocatalytic oxidation of gaseous benzene. The results show that the TiO2 calcined after solvothermal treatment suffers from lower specific surface area,and hence de-creases its photocatalytic activity. The photocatalytic activities of the TiO2 by solvothermal treatment with or without calcination in degradation 400 mg/m3 benzene are 3.7 and 4.1 times as high as catalyst without solvothermal treatment,respectively.  相似文献   

17.
Carbon nanotube (CNT) arrays confined by porous anodic aluminum oxide (AAO) template were synthesized using ethanol as reactant carbon source at low pressure. Images by scanning electron microscope (SEM) and low magnification transmission electron microscopy (TEM) show that these CNTs have highly uniform outer diameter and length, absolutely controlled by the diameter and depth of nano-channel arrays of the AAO. High resolution transmission electron microscopy (HRTEM) imaging indicates that the graphitization of the CNT walls is better than the results reported on this kind of template-based CNT arrays, although it is not so good as that of multiwalled carbon nanotubes (MWCNTs) synthesized by catalysis. CNTs synthesized using acetylene as reactant gas show much less graphitization than those prepared using ethanol by comparing the results of HRTEM and Raman spectroscopy. The etchingeffects of decomposed OH radicals on the amorphous carbon and the roughness of AAO nano-channel arrays on the CNTs growth were employed to explain the graphitization and growth of the CNTs.  相似文献   

18.
An integrated Bi_2O_3(i-Bi_2O_3) nanostructure with a particle size 10 nm inducing agglomerated structure were synthesized by dissolving bismuth nitrate pentahydrate in diethylene glycol at 180 ℃ with post heat treatment.The prepared i-Bi_2O_3 nanostructures were employed for the construction of Au/i-Bi_2O_3 composite system and characterized by X-ray diffraction pattern,UV-visible diffuse reflectance spectroscopy(DRS),and transmission electron microscopy,X-ray photoemission spectroscopy(XPS) and Energy dispersive X-ray spectroscopy(EDS).The i-Bi_2O_3 nanostructure and Au/i-Bi_2O_3 composite system were found to exhibit high photocatalytic activity than commercial Bi_2O_3 in decomposing salicylic acid under visible light irradiation.The high catalytic activity of i-Bi_2O_3 nanostructure was deduced to be caused by charge separation facilitated by electron hopping between the particles within the integrated structure and space-charge separation between i-Bi_2O_3 and Au.The charge separation behavior in i-Bi_2O_3 nanostructure was further bolstered by comparing the measured.OH radical produced in the solution with i-Bi_2O_3 nanostructure,commercial Bi_2O_3 and Au/i-Bi_2O_3 composite which readily react with 1,4-terephthalic acid(TA) inducing 2-hydroxy terephthalic acid(TAOH) that shows unique fluorescence peak at 426 nm.The space-charge separation between i-Bi_2O_3 and An was confirmed by measuring the electron spin resonance(ESR) spectra.  相似文献   

19.
GaN nanowires were successfully prepared on Si(111) substrate through ammoniating Ga203/BN films deposited by radio frequency magnetron sputtering system. The synthesized nanowires were confirmed as hexagonal wurtzite GaN by X-ray diffraction, selected-area electron diffraction and Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy revealed that the grown GaN nanowires have a smooth and clean surface with diameters ranging from 40 to 160 nm and lengths typically up to several tens of micrometers. The representative photoluminescence spectrum at room temperature exhibited a strong UV light emission band centered at 363 nm and a relative weak purple light emission peak at 422 nm. The growth mechanism is discussed briefly.  相似文献   

20.
A photocatalyst consisting of TiO2 powder and rectorite was prepared and activated utilizing solar light and used for degradation of simulated dye wastewater (methyl solution). The effects of roasting temperature, the way of adding rectorite, and the amount of the rectorite on the photocatalytic activity have been investigated. The results indicated that rectorite-TiO2 photocatalyst prepared with the right proportional amount of rectorite and titanium dioxide, could effectively degrade the methyl orange solution in sunlight. After reacting in sunlight for 8 hours, the methyl orange decolorization reached 96%. The photocatalytic activity of rectorite-TiO2 was much better than that of TiO2 in sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号