首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
市场需求的存在,决定劳动的必要性,是商品价值形成的前提;市场供求关系的变化影响劳动的有效性,从而影响商品价值量;市场范围决定商品价值的形成范围.商品价值包括质和量两个方面,质是指凝结在商品中的一般人类劳动,量是指凝结在商品中的一般人类劳动通过市场而满足他人需要的程度.劳动是商品价值的唯一源泉,劳动和市场共同决定商品价值量的大小.  相似文献   

12.
论信息时代图书馆服务模式的演变   总被引:6,自引:1,他引:5  
在现代信息技术的推动下,图书馆传统的管理体系和服务方式正在发生巨大变革。从读者服务模式的转变、读者服务范围的拓展、读者服务内容的增加、读者服务功能的扩展、读者教育的开展以及服务人员角色的转变等方面对未来图书馆读者服务的发展趋势和发展规律进行了论述。  相似文献   

13.
磁性药物微球的组成直接影响其药物释放速度。当微球中固化白蛋白含量接近时,药物含量越高,微球的通透性越好;药物含量相同时,固化白蛋白含量越高,药物的通透性越差。磁性药物微球的水悬浮液通过外磁场时的定位量随着介质流速的减小、外磁场的增强和微球中Fe_3O_4含量的增加而增加。增加分散介质粘度时,微球的定位量减小。  相似文献   

14.
根据热弹性力学理论,建立了渣皮厚度可变的铜冷却壁热-力耦合应力场分布计算模型,从铜冷却壁本体和炉渣-镶砖界面应力分布的角度分析了煤气温度、冷却制度、镶砖材质和炉渣性质等因素对铜冷却壁寿命及挂渣稳定性的影响规律.计算结果表明:煤气温度的升高使铜冷却壁本体应力线性升高,同时挂渣稳定性减弱;铜冷却壁本体应力值及挂渣稳定性均随渣皮厚度增加而呈现先下降后上升的趋势,实际生产中渣皮厚度应维持在30~60 mm之间;冷却水流速的增大会导致铜冷却壁本体应力值小幅上升,但可使挂渣稳定性增强;冷却水温的提升可小幅降低冷却壁本体应力,但会显著降低挂渣稳定性;镶砖热导率的提升和炉渣热膨胀系数的减小均有利于降低铜冷却壁本体应力并增强挂渣稳定性.  相似文献   

15.
研究了合金中的二元子系中的两组元的性质受到子系外组元的影响而引起形成焓的改变.模拟发现子系中组元的电负性和电子密度的改变与其和子系外组元电负性之和成比例,计算中可将此影响等效到对组元体积的影响,当子系外有多个组元时,其电负性的作用可等效到一个组元.对三元系合金形成焓的计算结果表明:考虑三个组元作用可大大提高预测的精度,结果与实验符合较好,优于几何模型预测结果.提出的合金形成焓建模的思路对于研究多元系合金的热力学性质也具有实际意义.  相似文献   

16.
服务业发展水平是衡量一个国家或地区生产社会化程度的重要标志.随着淮安市社会经济事业的快速发展,淮安的服务业已进入了快速发展期.基于对淮安市服务业效率定量评估的考虑,本文选取了淮安市2000~2007年的相关统计数据,运用数据包络分析(DEA)法对淮安市服务业近8年的发展进行了效率分析,同时也分析了它们的规模收益与投入冗余率,指出了相对无效率年的症结所在,为未来的投入发展提供了参考.  相似文献   

17.
改变框架柱的轴压比,对10根钢筋混凝土柱与5根钢柱进行压弯试验,拟合了轴压比对框架柱抗侧刚度的影响公式.用等效水平力方法推导了结构临界重力荷载,提出了基于结构刚重比控制的框架重力二阶效应的稳定计算方法,给出了考虑轴压比影响时框架结构稳定性的刚重比控制方法.结果表明:考虑轴压比影响,框架柱抗侧刚度提高,使得计算的刚重比更容易满足规范关于框架结构稳定性对刚重比的要求,考虑轴压比对框架柱抗侧刚度的影响,符合工程实际,为现行规范对高层框架侧移计算的完善提供参考.  相似文献   

18.
关于建立科技创新基金评价体系的思考   总被引:1,自引:0,他引:1  
通过参与创新基金项目的实际操作过程,运用项目、战略、市场、人力资源、财务等领域的相关知识进行了分析、思考和总结,提出了创新基金项目技术和经济评价缺乏基本的体系的问题,创新性地设计了全面评价技术创新项目的评价基本体系。具体包括:企业情况分析、企业发展战略与投资项目的关联性分析、技术创新性分析、技术,行性和成熟性分析、项目产品市场分析与竞争能力分析、财务(经济)和社会效益评价等。  相似文献   

19.
提高党的建设科学化水平是在科学判断世情、国情和党情的新变化的基础之上提出来的一个重大命题和重大任务,为新的历史条件下党的建设指明了方向。文章通过对"党的建设科学化"和"提高党的建设科学化水平"命题提出背景和目的进行分析,界定了提高党的建设科学化水平与党的建设科学化的基本内涵。  相似文献   

20.
本文通过复习伤口收缩及瘢痕收缩的有关文献和通过有关病理标本的观察,指出伤口收缩与瘢痕收缩是两个过程,并认为两者收缩的机制不同。目前伤口收缩机制的假说主要有肌纤维母细胞说,伤口内容物说和肌肉收缩说。通过比较,作者认为肌肉收缩说比较合理。关于瘢痕挛缩机制的学说,目前文献已否定胶原纤维老化收缩学说,只提肌纤维母细胞学说。通过观察有广泛瘢痕病变的标本(如门脉性肝硬化,原发及继发性肾固缩等),未发现有病变器官的主质细胞和血管由于瘢痕组织收缩而导致的萎缩和受压现象。作者认为,这些病变器官及瘢痕缩小的主要机制是由于病灶内主质细胞的丢失,以及肉芽组织及瘢痕组织内充血血管不再充血、数量减少,以及其间质水肿液消退所引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号