共查询到19条相似文献,搜索用时 54 毫秒
1.
2.
3.
一个图G(V,E)的控制数γ(G)是V的这样一个子集S的最小基数,使得G中每一个顶点或者在S中或者和S中的一些顶点邻接。本文讨论了控制数为2的n阶简单连通图的邻接谱半径下界,给出了谱半径达到最小时的极图。 相似文献
4.
为了进一步研究图的拓扑结构与其谱半径之间的关系,在所有给定阶数和割边数的连通图中,确定了具有极大无符号Laplace谱半径的图,并给出了该类图谱半径的上界. 相似文献
5.
令B_(n,n+1)~W表示阶为n的赋权双圈图的集合,W={w_1,w_2,…,w_n+1},其中w_1≥w_2≥…≥w_n+1>0为权集合.本文确定了它们中谱半径最大的赋权双圈图的结构及部分权值的分布情况. 相似文献
6.
设(B)(n,α)是独立数为α的n阶双圈图,(B)1(n,α)是由(B)(n,α)中含有两个边不交的圈构成的双圈图子集,(B)2(n,α)=(B)(n,α)\(B)1(n,α).文中分别研究了(B)1(n,α)和(B)2(n,α)中具有最大拟拉普拉斯谱半径的极图.进一步地,得到了(B)(n,α)中拟拉普拉斯谱半径的上界... 相似文献
7.
8.
何春阳 《盐城工学院学报(自然科学版)》2014,27(3):18-21
Nikiforov等人最近将图谱研究与极值图论相结合,提出了谱Turán型问题:给定一个图F,设G是一个不含子图与F同构的n阶图,那么图G的谱半径至多是多少?双圈图是边数等于顶点数加1的简单连通图。近期,部分学者对双圈图的谱半径进行了研究,确定了双圈图谱半径的第1~10大值和相应的极图。受此启发,研究了不含三圈的双圈图,确定不含三圈的双圈图的谱半径的上界,并刻画了相应的极图。 相似文献
9.
1986年,R. A. Brualdi 和 E. S. Solheid 提出关于给定某类图中谱半径最大的图的问题.近几十年,这个问题吸引了众多图论工作者的兴趣。这篇论文研究了具有 个顶点和 个悬挂点的双圈图中无号拉普拉斯谱半径,同时给出了这类图中无号拉普拉斯谱半径最大的图。 相似文献
10.
叶蔼云 《盐城工学院学报(自然科学版)》2023,(3):59-64
图的A_α-矩阵是图的度对角矩阵和邻接矩阵的凸线性组合,是图的邻接矩阵和无符号拉普拉斯矩阵的共同推广,其最大特征值称为图的A_α-谱半径。对于■,本文确定了围长给定的n阶双圈图的A_α-谱半径的上界和极图,推广了已有的成果。 相似文献
11.
图G的距离谱半径ρ(G)是图G的距离矩阵的最大特征值.本文利用线性代数和图论的方法,先给出了一些使距离谱半径递减的图变换,然后利用这些变换确定了圈不交的双圈图中距离谱半径最小的极值双圈图,同时,给出了对应距离谱半径满足的三次方程. 相似文献
12.
电阻距离这一概念是由Klein和Randic引入的,一个图的Kirchhoff指标定义为G中所有点对的电阻距离和.满载双圈图是指圈上的所有点的度数不小于3的双圈图.该文给出了满载双圈图的最大,最小Kirchhoff指标并刻画出了与之相对应的极图. 相似文献
13.
设G为n阶连通的简单图 ,ρ(G)为图G的邻接谱半径 ,μ(G)表示G的Laplacian谱半径。(d1,d2 ,… ,dn) (其中d1≥d2 ≥…≥dn)为G的顶点度序列 ,令r=max{d(u) +d(v) | (u ,v) ∈E(G) } =d(x) +d(y) ,s=max{d(u) +d(v)| (u ,v) ∈E(G) - (x ,y) }。该文证明了μ(G)上下界的可达性 :μ(G) =μ≤ 2 + ρ(LG) ,等式成立当且仅当G是偶图。μ(G)≤ 2 + (r- 2 ) (s- 2 ) ,成立等式当且仅当G为半正则偶图或P4 。μ(G)≥d1+ 1,成立等式当且仅当d1=n- 1。 相似文献
14.
15.
设G为n阶简单连通图,V(G)为G的顶点集,E(G)为G的边集,du表示顶点u的度,Tu表示顶点u的2-度,μ(G)表示图G的Laplieian谱半径。该文证明了μ(G)≤man{√du^2 dv^2 Tu Tv|uv∈E(G)}。特别,若G为偶图,则min{√du^2 dv^2 Tu tv}uv∈E(G)≤μ(G)≤min{√du^2 dv^2 Tu tv|uv∈E(G)}。 相似文献
16.
图的谱半径的上界(英文) 总被引:2,自引:0,他引:2
扈生彪 《河北大学学报(自然科学版)》2000,20(3):232-234
利用组合矩阵方法 ,精细地刻画出连通图的最小度与谱半径的上界之间的关系 ,在一定条件下改进了以前的一个结果。 相似文献
17.
设G是一简单图,K(G)是图G的无符号Laplace矩阵,K(G)的谱称为G的无符号Laplace谱。本文描述一类给定点连通度或边连通度图的无符号Laplace谱半径。 相似文献
18.
给出了由边数为m、顶点数为n的简单连通图G生成的树图T(G)及邻树图T^*(G)的谱半径的上界:ρ(T(G))≤det(Hr(G))(1-1/m) ρ(T^*(G))≤det(Hr(G))(1-1/x′(G))其中x′(G)是图G的边色数;并指出当G≌Cn时,ρ(T(G))的上界可达。 相似文献
19.
乔晓云 《太原师范学院学报(自然科学版)》2014,(1):5-7
设G为n阶简单连通图,若L(G)为图G的度对角矩阵与邻接矩阵的差,则称L(G)为图G的Laplacian矩阵.结合非负矩阵谱理论,利用图的顶点度和平均二次度给出了图G的Laplacian矩阵的谱半径的新上界,同时给出了达到上界的极图. 相似文献