共查询到16条相似文献,搜索用时 46 毫秒
1.
本文主要讨论了GWCN环的若干性质以及它与一些特殊环的关系,研究了GWCN环的强正则性,证明了:若R是有Abelian极大左理想的GWCN环,那么下列条件等价:(1)R是强正则环;(2)R为左GP-V’-环,且R的极大本质左理想均为广义弱理想;(3)R是左GP-V’-环,且R的极大本质右理想均为广义弱理想. 相似文献
2.
文中给出了morphic-环在约化条件下的一些刻划,并证明了约化的morphic-环是强clean环。 相似文献
3.
给出weakly-normal环的几个刻画,研究weakly-normal环的一些性质.主要证明了如下结果:①R为weakly-normal环e N(R)(1-e)■N*(R);②设R为左WGC2环和weakly-normal环,则R为co-Hopfian环;③设R为weakly-normal环,x∈R,n∈Ζ+,若xn是clean元,则x也是clean元;④R为约化环R为weakly-normal环、左NPP环且N*(R)=0. 相似文献
4.
根据W.K.Nicholson,Y.Zhou给出的一般chean环的定义,对Clean环的几个重要性质进行了论述,并在此基础上讨论了一般clean环的扩张,对Clean环是Morita不变量在一定条件下进行了阐述. 相似文献
5.
主要工作如下:(1)研究了morphic环和GP-V环与强正则环的关系;(2)讨论了morphic环和GP-V环的非奇异性;(3)证明了在一定条件下morphic环和GP-V环的等价性. 相似文献
6.
将clean环的定义推广到任意环(不必有1),证明了以下结论:(强)clean环的理想是(强)clean环;若I是R的一个理想,且I蘆(R),则R是clean环当且仅当R/I是clean环,且其幂等元可提升;R是clean环当且仅当R/J(R)是clean环,且其幂等元可提升;左Artin环是clean环;直积ΠRi是(强)clean的当且仅当每个Ri是(强)clean的;若R是clean环,G是阶为2的群,满足一定条件,群环RG也是clean环.还证明了有些上三角矩阵环是clean环,推广了已有的一些结果. 相似文献
7.
Morphic环的强正则性 总被引:5,自引:4,他引:5
证明了环为强正则环当且仅当它为约化的左P-内射的左morphic环,同时给出了左morphic环及右morphic环的强正则性以及它们与morphic环之间的关系. 相似文献
8.
《河南大学学报(自然科学版)》2013,(6)
给出GCN环的定义,研究GCN环的一些性质.主要证明了如下结果:GCN环是直接有限环;GCN环是左极小Abel环;设R为GCN环,若x∈R是exchange元,则x是clean元;R是约化环当且仅当R是半素的GCN环. 相似文献
9.
左NSF环是左SF环的推广,研究左NSF环的一些性质,得到如下主要结果:①左NSF的ZI环是约化环,从而为强正则环;②R为n-正则环当且仅当R为左NSF环和右NPP环;③设R是左NSF环,h∈E(R),则hRh是左NSF环. 相似文献
10.
文章首先介绍纯理想的定义,把纯理想的定义推广到弱纯理想,探讨它的某些内容;随后给出GPF环的概念,得到约化GPF环的一个等价条件;重点讨论约化GPF环的一些性质;最后给出GPF环与GPF模之间的关系. 相似文献
11.
张文汇 《西北师范大学学报(自然科学版)》2006,42(2):23-25
设T=A0M B是形式三角矩阵环,则T是reduced环,Von Neumann正则环,强正则环及弱正则环,当且仅当A,B是reduced环,Von Neumann正则环,强正则环及弱正则环,且M=0. 相似文献
12.
13.
研究斜多项式环的一些性质,证明了:(1)如果环 R 是一个α-Armendariz 环,则 J(R[x;α])∩R 是诣零的;(2)如果环 R 是一个α-Armendariz 环,则环 R 是α-Baer 环当且仅当 R[x;α]是-α-Baer 环;(3)如果环 R 是一个α-Armendariz 环且满足 Cα条件,则环 R 是α-拟 Baer 环(分别地,右α-p.q.-Baer 环、右 zip 环)当且仅当 R[x;α]是-α-拟 Baer 环(分别地,右-α-p.q.-Baer 环、右 zip 环)。 相似文献
14.
王文康 《山东大学学报(理学版)》2008,43(2):62-65
称环R是Armendariz环, 如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x], 那么aibj=0,其中0≤i≤m, 0≤j≤n。称环R是reduced环,如果它没有非零的幂零元。称环R是半交换环, 如果由ab=0,可得aRb=0,其中a,b∈R。找到了reduced环上的上三角矩阵环的一类子环既是Armendariz环又是半交换环。 相似文献
15.
Morphic环的一些性质 总被引:2,自引:0,他引:2
李艳午 《淮北煤炭师范学院学报(自然科学版)》2007,28(3):22-24
文章研究了M orphic环的一些性质,证明了:(1)约化的Morphic环是左(右)遗传的;(2)约化环R是Morphic环■M∈MR,M是平坦模;(3)约化环R是Morphic环■每个循环左R-模是GP-内射的R是左PP环和左GP-内射环。 相似文献