首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

2.
设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。  相似文献   

3.
令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。  相似文献   

4.
设H为复的无限维可分Hilbert空间,B(H)为H上有界线性算子的全体.若σ(T)\σw(T)=πoo(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,πroo(T)={λ∈isoσ(T):0dimN(T-λI)∞};当σ(T)\σw(T)∈roo(T)时,称T∈B(H)满足Browder定理.本文利用算子的广义Kato分解性质,刻画了算子在微小紧摄动下单值延拓性质(SVEP)与Weyl型定理之间的关系.  相似文献   

5.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体。T∈B(H)称为是满足a Weyl定理,若σa(T)\σaw(T)=πa00(T),其中σa(T),σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,πa00(T)={λ∈isoσa(T):0dimN(T-λI)∞}。本文通过定义新的谱集,给出了算子演算满足a Weyl定理的判定方法,同时也考虑了a Weyl定理的摄动。  相似文献   

6.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。  相似文献   

7.
设H为无限维的复可分Hilbert空间,B(H)为H上的有界线性算子的全体。设T=(A B -B A)∈B(HH)为算子矩阵。本文在Bk=0(k∈N且k≥2),AB=BA时,用A的单值延拓性质的紧摄动和Browder定理的紧摄动分别刻画了T的单值延拓性质的紧摄动和Browder定理的紧摄动。  相似文献   

8.
设A∈B(H),B∈B(K)为给定的两个算子,用MC=(A C0B)表示作用在HK上的上三角算子矩阵。通过定义新的预解集,探讨了矩阵中分量A,B在该集合中所具有的性质,使得MC满足单值延拓性质的微小紧摄动。同时研究了上三角算子矩阵MC满足单值延拓性质的微小紧摄动的充要条件,并且举例说明主要定理中所给条件的本质性。  相似文献   

9.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

10.
若算子T有σ(T)\σw(T)■π00(T)成立,则称T满足Browder定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,且π00(T)={λ∈isoσ(T),0相似文献   

11.
设C是复数域, H是C上无穷维可分的 Hibert 空间,B(H)及K(H) 分别表示H上有界线性算子和紧算子的全体.若T∈B(H),记σ(T),σa(T),σea(T)及σja(T) 分别表示T的谱, 近似点谱,本质近似点谱及联合近似点谱[1,2].  相似文献   

12.
令B(H)为无限复可分的Hilbert空间H上的有界线性算子全体。若T∈B(H),定义H(T)为在T的谱集σ(T)的某个邻域上解析但在σ(T)的任一分支上不为常数的函数全体。利用新定义的谱集,研究了算子T及f(T)(f∈H(T))的Weyl定理,并刻画了T和f(T)满足Weyl定理的等价条件。另外利用所得的结论,探索了p-hyponormal(或M-hyponormal)算子的Weyl定理。  相似文献   

13.
算子T∈B(H)称作有(ω1)性质,如果σa(T)\σea(T)(∈)00(T),其中σa(T)和σea(T)分别表示算子T的逼近点谱和本性逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}.本文研究了Helton类算子的(ω1)性质的稳定性,同时研究了2x2上三角算子矩阵在紧摄动下的(ω1)性质的稳定性.  相似文献   

14.
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体。若σ(T)\σ_w(T)=π00(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σ_w(T)分别表示算子T的谱和Weyl谱,π00(T)表示谱集中孤立的有限重特征值的全体。首先给出了Hilbert空间上有界线性算子WeylKato分解的定义,并由Weyl-Kato分解的性质定义了一种新的谱集,利用该谱集刻画了算子函数演算满足Weyl定理的充要条件。  相似文献   

15.
设H是复可分无限维Hilbert空间,B(H)为H上的有界线性算子的全体。Hilbert空间H中一个算子T称作有单值扩张性质(简写为SVEP,记作T∈(SVEP)),若对任意一个开集U∈C,满足方程(T-λI)f(λ)=0(∀λ∈U)的唯一的解析函数为零函数,其中C代表复数集。T∈B(H)称为满足单值扩张性质的紧摄动,若对任意的紧算子K∈K(H),T+K满足单值扩张性质。 讨论了有界线性算子满足单值扩张性质的紧摄动的判定条件,同时给出了2×2上三角算子矩阵满足单值扩张性质的紧摄动的充要条件。  相似文献   

16.
讨论了一类本性正常算子的(U K)-轨道的闭包:(U K)(T)↑-。具体地讲,如果T是一个具有正常加紧形式的三角算子,且它的本性谱是完备的,对角线以上部分是紧的,得出结论:A∈L(H),A∈(U K)(T)↑-的充要条件是:(1)A∈Nor(H) K(H);(2)σ(A)增包含σ(T),σ0(A)增包含于σ0(T),σe(A)=σe(T);(3)ind(λ-A)=ind(λ-T),A↓λ∈ρs-F(A)=ρs-F(A)=ρF(A);(4)nul(λ-A)≥nul(λ-T),A↓∈ρs-F(A);(5)如果λ∈σe(A)则rankE(λ;T)。除此之外,如果T是一个双三角的本性正常算子,它的谱σ(T)=σe(T)=σ是C的一个完备集,则A∈(U K)(T)↑当且仅当A满足:(1)A∈Nor(H) K(H);(2)σ(A)增包含σ(T)是完备的;(3)σe(A)=σe(A)=σe(T),且对任意的λ∈ρs-F(A),ind(λ-A)=0。  相似文献   

17.
设T=(A,B,0,JA*J)∈B(H⊕H),其中A,B∈B(H),共轭变换J为H上满足J2=I且任给x,y∈H,都有〈Jx,Jy〉=〈y,x〉的反线性映射。研究了算子矩阵T的单值扩张性质以及Browder定理在紧摄动下的稳定性。  相似文献   

18.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.T∈B(H)称为满足(R1)性质,若σa(T)\σab(T)?π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和本质逼近点谱,π00(T)={λ∈isoσ(T):0相似文献   

19.
利用由一致Fredhol m指标性质定义的新谱集σ2(.)研究Hilbert空间上有界线性算子的广义Weyl型定理,得到了T∈B(H)满足广义Weyl型定理的充要条件,同时将主要结论应用到H(p)类算子.  相似文献   

20.
考虑Weyl型定理中的A-Browder定理和A-Weyl定理, 利用拓扑一致降标法得到了: 对任意的C∈B(H), 算子MC满足A-Browder定理和A-Weyl定理微小紧摄动新的等价条件和判定方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号