首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制备了5种具有不同烷基数目与链段长度的丙烯酸酯聚合物,将它们按照不同添加量(w=5%,10%,15%)分别添加到天然乳胶中,研究酯侧链结构对丙烯酸酯聚合物与天然乳胶共混相容性的影响。结果表明,当丙烯酸聚合物质量分数为10%时,酯侧链烷基数目最多、链段最长的聚合物所改性的乳胶薄膜的拉伸强度、撕裂强度、硬度和断裂伸长率最大,并具有最小的拉伸永久变形。表征测试进一步证实聚合物酯侧链上烷基数目越多、链段越长,改性薄膜表面越趋于平整和光滑,其薄膜断面变得致密而无析出物,共混薄膜的玻璃化转变温度也逐渐升高,说明共混物两相间相互扩散程度不断增强。实验获得一种具有优良性能的改性薄膜材料。  相似文献   

2.
含氟丙烯酸酯共聚物乳液的结构与性能   总被引:1,自引:0,他引:1  
采用可反应乳化剂,合成稳定的甲基丙烯酸十二氟庚酯、甲基丙烯酸甲酯和丙烯酸丁酯的共聚物乳液.红外光谱和核磁共振表征成膜后的共聚物组成和结构,结果显示随着混合单体中含氟丙烯酸酯质量分数的提高,共聚产物中氟含量也提高.X射线光电子能谱表征结果表明,在一定范围内,乳胶膜表面含氟量随含氟丙烯酸酯单体量的增加而增加,当甲基丙烯酸十二氟庚酯在单体中的质量分数超过20%,其量的继续增加不能引起乳胶膜表面氟含量的明显增大.乳胶膜表面水接触角的测定结果也具有同样的变化规律.含氟侧链在乳胶膜表面的富集,使得含少量氟丙烯酸酯共聚物就可提供织物良好的抗水抗油性能.  相似文献   

3.
含羧基活性基团的聚酰亚胺制备和表征   总被引:1,自引:1,他引:1  
合成了一种4,4′-二氨基-4″-羟基三苯甲烷的二胺单体,用该单体分别和芳香性二酐、酯环二酐以及含氟二酐制备了三种含羟基聚酰亚胺,并对其溶解性能和热性能进行了初步研究,发现含羟基二胺单体和含氟二酐生成的聚酰亚胺能溶解在极性非质子溶剂中,且显示出良好的耐热性能,这种聚酰亚胺可通过羧基引入功能基团制备功能性聚酰亚胺。  相似文献   

4.
热固性丙烯酸酯乳胶固化行为的研究   总被引:2,自引:0,他引:2  
本文用动态力学扭辫分析法,研究了丙烯酸酯共聚乳胶与六甲氧基甲基三聚氰胺的热固化动态力学行为。结果表明,热固化丙烯酸酯仅含羧基的共聚乳胶固化是一步完成,既含羧基又含羟基的乳胶固化分两步进行,第一阶段羧基参与固化反应,第二阶段是羟基反应。  相似文献   

5.
选用异佛尔酮二异氰酸酯(IPDI)、封闭剂3,5-二甲基吡唑(DMP)、可阳离子化扩链剂三乙醇胺(TEOA)、含氟丙烯酸酯单体ZonylTM及其它丙烯酸酯单体合成了用于含氟阴极电泳(CED)涂料的阳离子型丙烯酸酯树脂和阳离子型封闭异氰酸酯固化剂(TId). 通过傅立叶变换红外光谱对合成的树脂和固化剂进行了表征;采用差示扫描量热、热重分析法分析了CED涂料的固化行为,发现CED膜可在较低温度(90 ℃附近)开始交联. 对含氟CED膜接触角的测定证实,含氟阴极电泳涂料是得到低表面能涂层的有效方法. 利用电化学阻抗谱对漆膜的耐腐蚀性进行了分析,发现含氟丙烯酸酯的引入可以提高漆膜的防腐性能.  相似文献   

6.
以偶氮二异丁腈(AIBN)为引发剂,以SDS/FS-3100/OP-10为复合乳化剂,以十六烷为助稳定剂,采用细乳液聚合的方法,合成了不同氟含量的含氟丙烯酸酯共聚物。采用破乳沉淀的方法获得了含氟丙烯酸酯共聚物固体产品。采用红外光谱对共聚物的结构进行表征,结果表明,通过细乳液聚合法可以有效实现全氟烷基乙基丙烯酸酯、丙烯酸丁酯和甲基丙烯酸甲酯的三元共聚。水接触角测试表明,当含氟单体摩尔比例为5.7%时,共聚物的水接触角可以达到112°,体现出较好的疏水性。对共聚物的热性能表征结果表明,含氟丙烯酸酯共聚物的起始分解温度为354.2℃,比不含氟的丙烯酸酯共聚物起始分解温度高出40℃,耐热性能较好。  相似文献   

7.
选用异佛尔酮二异氰酸酯(IPDI)﹑封闭剂3, 5-二甲基吡唑(DMP)﹑可阳离子化扩链剂三乙醇胺(TEOA)﹑含氟丙烯酸酯单体ZonylTM及其它丙烯酸酯单体合成了用于含氟阴极电泳(CED)涂料的阳离子型丙烯酸酯树脂和阳离子型封闭异氰酸酯固化剂TId. 通过傅立叶变换红外(FTIR)对合成的树脂和固化剂进行了表征; 用差示扫描量热(DSC)﹑热重分析(TGA)观测了CED涂料的固化行为, CED膜可在较低温度(90℃附近)开始交联. 对含氟CED膜的接触角的测定证实, 含氟阴极电泳涂料是得到低表面能涂层的有效方法. 利用电化学阻抗谱(EIS)对漆膜的耐腐蚀性进行了分析, 发现含氟丙烯酸酯的引入可以提高漆膜的防腐性能.  相似文献   

8.
以苯乙烯、丙烯酸-2-乙基己酯和甲基丙烯酸十二氟庚酯为反应单体,在阴/非离子复合乳化剂条件下,采用乳液聚合方法制备含氟丙烯酸酯乳液.通过优化工艺条件,得到了性能较好的含氟拒水整理剂.对其进行红外光谱分析,结果表明加入的单体已成功引入到共聚物链段中.用合成的含氟聚丙烯酸酯乳液对纯棉织物进行织物的拒水整理,得到该整理剂的最佳应用工艺为:整理剂用量50g/L,轧余卒80%,100℃预烘3min,170℃焙烘180s.  相似文献   

9.
采用由三羟甲基丙烷与顺丁烯二酸酐合成的含羧基半酯二元醇与甲基丙烯酸甲酯、丙烯酸丁酯和甲基丙烯酸六氟丁酯进行自由基共聚,经无皂乳化制备了多羟基含氟聚丙烯酸酯(HO-FPA)乳液.HO-FPA再与由2,4-二异氰酸甲苯酯、聚癸二酸一缩乙二醇酯和二羟甲基丙酸合成的水性聚氨酯预聚体反应,在水中分散得到氟化聚氨酯-丙烯酸酯(FPUA)乳液.采用FTIR测试技术对聚合物结构进行了表征.研究了HO-FPA羟值含量对双组分涂膜性能的影响,含氟单体用量对制备FPUA乳液时产生凝胶率的影响以及含氟量对涂膜表面接触角的影响.结果表明,HO-FPA的羟值含量达到6.5%时,FPUA中含氟量在5.1%时双组分涂膜的性能最佳.  相似文献   

10.
以含羟基或长氟碳链的丙烯酸酯和端乙烯基硅化合物为原料,采用乳液自由基聚合法制备了水性氟硅丙烯酸树脂(WFSi PA),再与水性异氰酸酯交联固化,并研究其涂膜性能.通过红外光谱、凝胶色谱和粘度测试,对WFSi PA的结构、相对分子质量和乳液流变行为进行了表征,并以力学性能测试和热重分析,探讨了水性异氰酸酯的用量对涂膜性能的影响.结果表明,所合成的WFSi PA乳液体系属于非牛顿流体,当异氰酸酯的用量为8%时,涂膜具有很好的疏水性和力学性能,在氮气中热失重5%时的温度为286℃,最大热降解速率温度为411℃.  相似文献   

11.
种子乳液聚合合成含氟水基聚氨酯分散体膜的研究   总被引:1,自引:0,他引:1  
本文报道了制备羧酸盐型水分散性聚氨酯用做种子乳液,聚合甲基丙烯酸六氟丁酯、丙烯酸丁酯得到核壳结构[1]含氟聚氨酯材料后干燥成膜,通过电子能谱(XPS)与接触角研究表明,在膜材料表面,氟由于低表面能而于表面高度富集,而包埋羧酸盐、氨基甲酸酯等亲水性强的基团或链段于膜材料的内部;同时,进行Cs+对羧基染色后的膜材料进行超薄切片的电子显微镜(TEM)与示差扫描量热(DSC)研究,结果表明聚含氟丙烯酸酯是分立于水基聚氨酯为膜基质材料的连续相中的。  相似文献   

12.
本文以对羟基苯甲酸、2,7-萘二酚、对苯二甲酸和少量的聚2,6-萘二甲酸乙二酯为单体制备了一系列具有不同配比的液晶共聚芳酯。用红外光谱法、直接裂解质谱法和裂解气相色谱法鉴定了共聚芳酯的分子链结构,指出共聚芳酯的分子链结构与所加5种单体链节结构基本一致。借助于热重分析仪研究了共聚芳酯的热稳定性及其与分子链结构之间的关系。结果表明:在空气介质中该共聚芳酯开始裂解的最低温度为320℃,裂解反应速度最快时的温度均高于490℃;并且发现,共聚芳酯的分子链结构对热稳定性有较明显的影响,链结构规整性好的共聚芳酯具有较高的热稳定性。实验结果指出,共聚芳酯在空气及氮气介质中的热裂解反应均分两步完成。正像文中的3号样品,空气中的第一步裂解反应在326℃开始发生,第二步裂解反应则发生在540℃左右。本文还探讨了共聚芳酯的热裂解机理。  相似文献   

13.
本文采用热重法(TG)和差示扫描量热法(DSC)研究了不同结构含氯聚芳酯的热性能和液晶性.实验结果表明:含氯聚芳酯有良好的热稳定性和理想的液晶性,其中含柔性链段系列含氯聚芳酯熔融温度最低,液晶相变温度范围宽;萘二酚系列含氯聚芳酯熔融温度高,热稳定性好,但液晶相变温度范围窄.  相似文献   

14.
为提高环氧丙烯酸酯的柔韧性,选用衣康酸(IA)和甲基丙烯酸羟乙酯(HEMA)反应生成含有羧基的单酯基,然后分别与环氧大豆油和环氧树脂进行环氧开环反应.当反应温度为110℃,反应时间为2 h,环氧基与羧基的摩尔比为1.15:1,催化剂三苯基膦(TPP)的质量分数为1.5%,阻聚剂对羟基苯甲醚(MEHQ)的质量分数为0.2...  相似文献   

15.
以N-(苄氧羰基)-L-天冬氨酸和亚硫酰氯反应制备了N-苄氧基天冬氨酸酐,然后将其与不同链长的二醇(Diol:乙二醇、二缩三乙二醇、聚乙二醇200和600)缩聚,合成含端羟基的天冬氨酸-二醇交替预聚物[ASP—Diol];分别以它们为大分子引发剂,辛酸亚锡为催化剂进行丙交酯/乙交酯(LA/GA:75/25)开环共聚,合成系列含侧氨基的天冬氨酸-二醇-聚乙丙交酯[PLGA-(ASP—Diol)一PLGA]多元三嵌段共聚物。利用FTIR、1HNMR、EA、DSC和GPC对共聚物结构进行了表征。结果表明,影响预聚物分子量的主要因素不是二醇的分子量,而是其端羟基的活性。但随着二醇链段长度增加,多元共聚物中氨基含量降低,玻璃化温度也明显下降。因此,通过改变二醇链段的长度(或分子量)可以有效控制PLGA-(ASP—Diol)-PLGA中侧氨基的密度及分布。  相似文献   

16.
含羧基半酯二元醇的合成及稳定性研究   总被引:1,自引:0,他引:1  
以邻苯二甲酸酐(PA),丁二酸酐(SA)和三羟甲基丙烷(TMP)为原料合成2种含羧基半酯二元醇新型乳化剂。研究了反应物配比、催化剂、反应温度、中和度、储存温度、溶剂等因素时其储存稳定性的影响,用红外光谱分析、酸值滴定和黏度法分析含羧基半酯二元醇的合成结果及其酸值随储存时间的变化,并采用不同方式提高其储存稳定性。结果表明:储存温度是影响SA-TMP稳定性的重要因素,在27℃时SA-TMP的储存稳定性最好;反应物配比和反应温度均对其稳定性影响甚微;加入催化剂可明显缩短反应时间,但对SA-TMP稳定性贡献不大:对SA-TMP中的羧基进行部分中和或加入部分溶剂可有效提高其储存稳定性。  相似文献   

17.
HPAR/HDIT聚氨酯材料的热降解动力学   总被引:1,自引:0,他引:1  
用热重-红外联用和动态力学热分析法研究了羟基丙烯酸树脂与六亚甲基二异氰酸酯三聚体反应生成的聚氨酯材料(PU)在254 nm紫外线(UV)照射加速老化前后的热降解动力学,结果表明在N2氛中硬链段热降解成含—NCO的化合物,而软链段热降解成含—COOR或—CO—的化合物,热降解是一级反应.在4个不同温度阶段,热降解反应的活化能(E)和频率因子随温度的变化而变化.UV照射前,PU硬链段的E在40.4~43.7 k J/mol,软链段的E在144.5~163.4 k J/mol,硬链段的热稳定性比软链段差.经UV照射8 500 h后,硬链段的E在43.3~50.6 k J/mol,软链段的E在136.5~157.2 k J/mol,PU的最大热降解速率温度降低了2~7 K.UV照射虽劣化了软链段的热稳定性,但也使PU进一步发生聚合,玻璃化转变温度有所提高.  相似文献   

18.
EVOH基单离子聚合物的结构与性能研究   总被引:1,自引:0,他引:1  
以聚乙烯乙烯醇为主链,利用其羟基的反应活性,通过Williamson反应将短链的聚乙二醇结构引入聚乙烯-乙烯醇主链上,并通过磺酸丙内酯开环反应对其侧链进行磺化,制备出一种主链为疏水的聚乙烯链段,侧链为(—CH2CH2O—)重复单元,且侧链末端为磺酸氢的梳形单离子聚合物.采用红外光谱分析法证实了氯代缩乙二醇被接枝到EVOH主链上以及—SO3—基团的存在;采用示差扫描量热法(DSC)和热重分析法(TG)对其热学性能进行了表征.DSC分析表明随着侧链长度的增加,主链和侧链的玻璃化转变温度均向低温方向移动;而TG分析显示EVOH-g-nSPEG的热失重曲线有两个失重台阶,并且在第一个失重台阶出现之前还出现了缔合水的失重,该离聚物的起始的热分解温度仍高于200℃.  相似文献   

19.
聚丙烯酸高碳醇酯降凝行为研究   总被引:5,自引:0,他引:5  
对给定正构烷烃碳链长度集中在碳数14的柴油而言,聚丙烯酸十四酯由于其烷基侧链长度与柴油中正构烷烃碳链长度匹配而表现出良好的降凝性能.聚合反应条件不同会直接影响高分子的相对分子质量分布,从而使高分子表现出不同的降凝性能.通过正交实验对制备聚丙烯酸十四脂的实验条件进行了优化,在最佳实验条件下,合成的聚丙烯酸十四酯对给定柴油的冷滤点最大降低值为6℃,凝点最大降低值为18℃.光学显微镜观察结果表明:降凝剂的降凝行为与其对蜡晶结晶的分割有关.降凝剂较少时,高分子具有分割蜡晶晶核的作用;降凝剂适量时,高分子产生晶核使蜡晶结晶细化且分散.后者晶型的结构特点对应着良好的降凝性能.  相似文献   

20.
以双酚AF为原料,通过硝化和还原合成得到含氟苯并噁唑聚合物的单体2,2-双(4-羟基-3-氨基苯基)六氟丙烷(3)。将等摩尔量的对苯二甲酰氯与化合物3反应制得邻羟基酰胺聚合物5,然后再高温脱水环化即得到含氟聚苯并噁唑聚合物6。通过红外、质谱和核磁等表征手段确定了双酚AF的硝化产物2和含氟苯并噁唑聚合物单体3结构。邻羟基酰胺聚合物5及含氟聚苯并噁唑聚合物6的结构由红外表征确定。热重分析表明,含氟聚苯并噁唑聚合物6的5%失重温度为530℃,分解温度为573℃,具有良好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号