首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用DSC,TBA.FTIR等手段,研究了TDE-85/DDS(4,5-环氧环己烷1,2-二甲酸二缩水甘油酯/二氨基二苯基砜)和TDE-85/PAI/DDS体系的固化行为及其动力学。发现在TDE—85/DDS体系的固化反应行为与TDE—85/m-PDA体系有很大差别,前者由于固化反应起始温度大于107℃,使TDE-85中所含的两种不同结构的环氧基——脂环族环氧基和缩水甘油酯环氧基均能同DDS发生固化反应,它们参加固化反应的起始温度没有明显的差别,固化过程是按一次完成,当TDE—85/DDS体系中加入PAI后,固化反应的活化能稍有提高,放热量有所下降,但对固化过程的规律无明显影响,根据TBA和DSC研究得出的有关数据,确立了该体系的固化制度,并用Arrhenius方程求得TDE-85/DDS体系在凝胶点前的表观活化能为43.9kJ/mol。  相似文献   

2.
基于2-氨基苯并噻唑和N,N,N',N'-四缩水甘油基-4,4'-二氨基二苯基甲烷,制得一种含氨基苯并噻唑刚性基团耐热环氧树脂材料.FTIR和DSC显示,在低于227℃归属于伯氨基和仲氨基与环氧基的加聚交联反应,而高于227℃是在叔胺催化下羟基与环氧基的反应.DMTA和TGA结果表明,固化物具有优异的热稳定性,玻璃化转变温度达到222°C,氮气氛中起始热降解温度为286.1℃,热降解质量分数5%或10%和最大热降解速率分别对应326.8,342.2和370.1℃.因此,这聚合物基体材料可适用于耐高温的技术领域.  相似文献   

3.
采用示差扫描量热法(DSC)研究利用癸二酸、甲基四氢苯(Me THPA)和桐油酸酐(TOA)用为固化剂时所制备的环氧沥青的固化过程,得到固化反应的表观活化能Ea、频率因子A和反应级数n等动力学参数,并计算出该环氧沥青材料的起始固化温度、固化温度和后固化温度等固化参数.研究发现:试样Ⅰ(只采用癸二酸作为固化剂)、Ⅱ(采用癸二酸和甲基四氢苯复配作为固化剂)、Ⅲ(采用癸二酸、甲基四氢苯和桐油酸酐复配作为固化剂)的反应活化能Ea分别为81.29 k J/mol、67.61 k J/mol和70.41 k J/mol,频率因子A分别为32.87×104、1.30×104和3.57×104,反应级数n分别为0.91、1.00和0.89;3种试样的开始固化温度T0分别为392.09 K、382.46 K和399.83 K,恒温固化温度Tp分别为458.60K、455.36 K和441.55 K,固化完成温度Ti分别为524.38 K、520.60 K和519.26 K,综合对比而言,试样Ⅲ更适合实际的工程应用.  相似文献   

4.
采用1,2-环氧环己烷4,5-二甲酸二缩水甘油酯(TDE-85)、对氨基苯酚环氧树脂(AFG-90)及其混合树脂,以二氨基二苯砜(DDS)为固化剂,添加氨基化多壁碳纳米管(MWCNTs-NH2)制备了纳米复合材料。应用非等温差示扫描量热(DSC),红外光谱(FT-IR)和力学性能测试等方法,分析了添加MWCNTs-NH2前后,树脂体系固化反应、醚化反应与压缩性能的变化。研究结果表明,碳纳米管/环氧树脂复合材料的压缩性能与固化反应后期羟基和环氧基团之间的醚化作用有密切关系。MWCNTs-NH2的加入阻碍了TDE-85/DDS体系固化反应后期的醚化作用,与纯树脂体系相比反应热降低了50 J/g,红外光谱中脂肪族醚键与苯环吸收峰面积比值降低了7.7%,复合材料压缩强度降低了3.2%。与之相反的是,MWCNTs-NH2的加入促进了AFG-90/DDS体系固化反应后期的醚化作用,与纯树脂体系相比,反应热提高了80J/g,红外光谱中脂肪族醚键与苯环的吸收峰面积比值提高了13.8%,复合材料压缩强度提高了17.4%。  相似文献   

5.
聚氨酯改性TDE-85/MeTHPA体系的固化反应   总被引:1,自引:0,他引:1  
采用聚氨酯预聚体、扩链剂和交联剂对TDE-85/甲基四氢邻苯二甲酸酐(MeTHPA)树脂进行改性,通过红外光谱和示差扫描量热法(DSC)分析,探讨聚氨酯(PU)改性TDE-85/MeTHPA树脂体系固化反应。研究表明:固化反应的表观活化能由TDE-85/MeTHPA树脂体系的83.14 kJ/mol降至PU改性TDE-85/MeTHPA树脂体系的67.91 kJ/mol。确定的PU改性TDE-85/MeTHPA树脂体系合适的固化工艺条件为:120℃,2 h 140℃,2 h 160℃,2 h。在该固化工艺制度条件下,PU改性TDE-85/MeTHPA体系固化反应完全,能满足固化工艺要求。  相似文献   

6.
在升温速率分别为2℃·min-1,5℃·min-1,10℃·min-1,20℃·min-1条件下,采用差示扫描量热仪(DSC)和热重分析技术研究了聚叠氮缩水甘油醚GAP的热分解特性,并在此基础上考察了GAP的动力学参数和热力学参数.结果表明GAP热分解峰温较高,热稳定性较好.采用Kissinger法和Ozawa-Doyle法讨论了热分解的表观活化能、指前因子、120℃时的分解速率常数k,其值分别为196.82 kJ·mol-1、4.47×1019 s-1、3.15 ×10-7 s-1.在218℃时热力学参教的活化熵为127.13 J·mol-1·K-1,活化焓为196.82kJ· mol-1,活化自由能为134.38 kJ·mol-1.  相似文献   

7.
利用 DSC研究了苯并口恶嗪二苯醚树脂中间体在不同催化剂和不同升温速率下的固化反应 ,计算了在热固化条件下的动力学参数 .结果表明 :催化剂、升温速率对起始固化温度 ,固化焓影响很大 ,在热固化条件下 ,固化反应的活化能为 1 1 9.6k J.mol-1 ,反应级数接近于 1 .  相似文献   

8.
用差示扫描量热法(DSC)研究了自制柔性不饱和聚酯/甲基丙烯酸甲酯树脂(FUP/MMA)和柔性不饱和聚酯/甲基丙烯酸甲酯/T-60改性粉煤灰(FUP/MMA/CFA)复合体系的固化过程.利用Kissinger法、Ozawa法求出FUP/MMA和FUP/MMA/CFA两体系固化反应的表观活化能分别为81.578 kJ·mol-1和77.231 kJ·mol-1;用ASTM E698-79标准方法求得两体系固化反应的指前因子lnA分别为20.40 s-1和19.15 s-1;结合Crane方程得到两体系的反应级数n分别为0.9377和0.9359;最终确定了固化反应的动力学方程.用T-β外推法确定了凝胶温度、固化温度和后固化温度等固化工艺温度.  相似文献   

9.
为了确定N,N-二缩水甘油对氨基苯酚缩水甘油醚环氧树脂(AFG-90)/四氢邻苯二甲酸酐(THPA)的固化工艺,采用非等温DSC法研究了固化反应动力学,制备了添加空心玻璃微珠(HGM)的固体浮力材料.结果表明, mAFG-90:mTHPA=1:1为最佳配比;Kissinger法计算的表观活化能E为67.72 kJ·mol-1,指前因子lgA为8.20 s-1;最概然机理函数为Avrami-Erofeev方程;固化工艺为100℃,1.0 h,125℃,2.5 h;添加HGM的固体浮力材料的密度为0.90 g·cm-3,压缩强度为113 MPa.   相似文献   

10.
本文研究了4,4′-二氨基二苯砜四缩水甘油基环氧树脂(AS-70树脂)与4,4′-二氨基二苯甲烷的固化反应。采用DSC法测定了固化反应热效应和反应速率,求得固化反应活化能为51.5KJ/mol;用TGA测定了浇铸体的热分解温度,表明AS-T70树脂的耐热性较好;用FT-IR跟踪固化反应过程中环氧基团特征吸收峰(906cm~(-1))的变化,求得的固化反应速率与DSC法测定的结果较吻合。  相似文献   

11.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了3种最稳定构型的酪氨酸分子的手性转变机理及水溶剂化效应。研究发现标题反应均有3条通道a、b和c。对于构型1和2,分别是手性碳上的质子在羧基顺反异构后以氨基、直接以氨基和羧基与氨基联合为桥迁移。对于构型3,分别是手性碳上的质子只以氨基、羰基与氨基联合以及羧基内氢迁移后再以氨基为桥迁移。势能面计算表明:构型1和2的主反应通道都是a,决速步自由能垒分别为257.0和264.0 k J·mol-1,构型3的主反应通道是a和c,决速步自由能垒分别为257.4和257.0 k J·mol-1,它们均来源于质子从手性碳向氨基氮迁移的过渡态。水溶剂效应使构型1的主反应通道决速步能垒降到113.1 k J·mol-1。结果表明:单体酪氨酸分子具有稳定性;水溶剂环境下酪氨酸的手性转变可以缓慢进行。  相似文献   

12.
为研究聚β-环糊精缓释微球的热稳定性及其热分解反应动力学参数,用热重法(TGA)和差示扫描量热法(DSC).结果其热分解反应为一级动力学过程,表观活化能Ea为164.04 kJ·mol-1(Kissinger法)或169.84 kJ·mol-1(Ozawa法),指前因子A为1.05×1013,反应速率常数k298为2.69×10-15 s-1,半衰期t2980.5为8.18×106 a.证明β-环糊精(β-CD)经聚合反应制成聚β-CD缓释微球后,其热稳定性显著提高.  相似文献   

13.
用示差扫描量热(DSC)和硫化仪方法研究乙烯-乙酸乙烯酯共聚物(EVA)及其交联发泡废弃物力化学解交联产物(PDM)在过氧化异丙苯引发下的交联反应动力学.DSC分析显示,EVA和共混物(EVA/PDM)交联反应的表观活化能分别为175.1和210.0 kJ·mol-1,指前因子(A)的对数值(ln A)分别为41.5和51.1;而硫化仪法的表观活化能分别为78.5~80.0和110.0~118.6 kJ·mol-1,ln A值分别为16.2~17.3和24.0~27.8.交联反应是复杂反应,近似地可认为是一级反应.废弃交联物中未解交联部分阻碍了交联反应,致使EVA/PDM的交联反应较EVA的难以进行,交联反应速率和活化能与交联度有关.DSC与硫化仪的结果是一致的.硫化仪测试是简便快速的方法,可用于指导生产.  相似文献   

14.
在pH=7.40的Tris-HCl缓冲溶液中,采用紫外光、荧光光谱法和粘度法研究了偶氮胂-β-环糊精包合物(β-CD-AS)与鲱鱼精DNA的作用方式.用摩尔比法确定了β-CD-AS与DNA的结合比为5:1.通过热力学研究得出结合常数为K291.15K=8.68×105 L·mol-1,K310.15K=8.43×105 L·mol-1.热力学函数为ΔrHmθ=27.04J·mol-1,ΔrGmθ291.15K=-2.78×104 J·mol-1,ΔrSmθ=95.47J·mol-1·K-1.结果显示该反应为熵驱动.实验进一步表明β-CD-AS与DNA之间的作用方式为混合模式,即部分嵌插和沟渠作用.  相似文献   

15.
在pH=7.40的Tris-HCl缓冲溶液中,采用紫外光、荧光光谱法和粘度法研究了偶氮胂-β-环糊精包合物(β-CD-AS)与鲱鱼精DNA的作用方式.用摩尔比法确定了β-CD-AS与DNA的结合比为5:1.通过热力学研究得出结合常数为K291.15K=8.68×105 L·mol-1,K310.15K=8.43×105 L·mol-1.热力学函数为ΔrHmθ=27.04J·mol-1,ΔrGmθ291.15K=-2.78×104 J·mol-1,ΔrSmθ=95.47J·mol-1·K-1.结果显示该反应为熵驱动.实验进一步表明β-CD-AS与DNA之间的作用方式为混合模式,即部分嵌插和沟渠作用.  相似文献   

16.
采用B3LYP/6-31++G(d,p)方法研究Ni~(2+)催化甘氨酸质子迁移机理.优化得到了7个中性配合物和1个两性配合物;两性的最稳定,结合能为-927.3 k J/mol.分子内单键旋转和羧基H在2个羧基O原子间的迁移导致中性构型转化,C-C键旋转的能垒低于21.9 k J/mol,C-O键旋转的能垒在23.1-46.4 k J/mol范围内,羧基H在O原子间迁移的正逆反应能垒分别为175.0和108.3 k J/mol.羧基H迁移到氨基生成两性构型,能垒为19.3k J/mol.Ni~(2+)导致氨基N原子负电荷减少0.48,削弱了N原子对羧基H原子的库仑吸引,钝化了共价键B_(O3–H6),动力学上不利于羧基H迁移;但是羧基H迁移后,形成的两性构型却是热力学最稳定体系.最稳定中性构型N1转化为最稳定两性构型Z1的路径为:N1→N1-N7→N7→N3-N7→N3→N3-N5→N5→N5-Z1→Z1,该路径的最高能垒为124.8 k J/mol.  相似文献   

17.
采用含联苯结构环氧树脂3,3',5,5'-四甲基联苯二酚二缩水甘油醚(TMBP)与层间距为2.33 nm的有机蒙脱土(O-MMT)进行插层复合,并选用芳香型固化剂4,4 '-二氨基二苯甲烷(DDM),制备了TMBP/DDM/MMT纳米复合材料.采用非等温差示扫描量热法(DSC)研究该体系的固化反应动力学,求得其表观活化...  相似文献   

18.
采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol~(-1),比单体在此通道的最高能垒266.1 k J·mol~(-1)明显降低,b通道最高能垒为285.0 k J·mol~(-1),比单体在此通道的最高能垒326.6 k J·mol~(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。  相似文献   

19.
用热分析方法研究了苯乙烯 -异戊二烯 -苯乙烯嵌段共聚物 ( SIS)与甲基丙烯酸甲酯接枝共聚物 ( SIS-PMMA)在 N2 气氛条件下的热降解动力学机理 .确定了标题化合物的特征分解温度 ,求得了热分解过程的表观活化能 ( E=2 70 .9k J· mol- 1 ) ,结果表明其热降解控制机理符合 Anti-Jander方程 :g( a) =[1 / ( 1 -a) 1 /3-1 ]2 .  相似文献   

20.
在不同升温速率条件下,利用同步差示扫描量热法(DSC)/热重法(TG)来研究纳米铝粉的非等温氮化动力学,通过5种积分法和一种微分法对数据进行处理,获得了纳米铝粉非等温氮化的最可机理函数。结果表明,氮化反应的表观活化能和指前因子分别为111.74 k J·mol~(-1)和103.46 s~(-1)。反应机理服从n=3/2的幂函数法则,其动力学方程为dα/dt=10~(3.28)·α~(-1/2)·e~(-13439.9/T)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号