首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
用计算流体力学(CFD)方法对波纹板除雾器内的气液两相流动进行了数值模拟,计算得到了不同液滴直径、进气速度与叶片间距下除雾器的除雾效率和压降,并分析总结了各参数对除雾效率和压降的影响规律.数值模拟还显示了液滴的运动轨迹以及液滴浓度、压力、速度和旋涡的分布情况,这对除雾器的优化设计具有指导意义.研究表明CFD方法可以成为除雾器设计的有效辅助手段.  相似文献   

2.
为了解决火电厂使用的折流板除雾器对小粒径雾滴脱除效果差的问题,提出一种新型的涡流除雾器,通过在除雾器中产生涡来使流场复杂,从而增加对小粒径雾滴的脱除效果。通过数值模拟方法研究涡流除雾器和折流板除雾器,并且通过实验对数值模拟进行验证。研究结果表明:当流速为3~7 m/s时,涡流除雾器的总除雾效率比折流板除雾器的总除雾效率大10.8%~29.8%;当流速为3~7 m/s时,涡流除雾器对于20μm雾滴的除雾效率便能达到90%以上;涡流除雾器对小粒径雾滴的脱除效果比折流板除雾器好,如当粒径为10μm时,涡流除雾器的效率比折流板除雾器大17.8%~18.2%;涡流除雾器的压降要比折流板除雾器大,当流速为3 m/s时,差值为193 Pa,而后差值随着流速的增大而增大。  相似文献   

3.
为了优化脱硫波纹板除雾器叶片的结构设计,按照正交实验方法设计的工况,使用Fluent模拟不同结构参数和运行工况下除雾器叶片内部流场.以数值模拟结果为样本,建立了基于最小二乘支持向量机除雾效率和除雾器压降特性模型,模型回归值与数值模拟计算值最大相对误差在2%以内.模型预测结果分析表明,叶片间距、转折角度、烟气流速和烟气含液量对除雾效率和压降有显著影响,与实验和理论分析结论一致.采用遗传算法对除雾器参数优化模型进行求解,结果表明在优化结构参数组合下除雾器性能有明显提高.提出的预数值计算与人工智能算法结合的方法为获取除雾器叶片最佳结构参数组合设计提供了新思路.  相似文献   

4.
随着国家工业烟气排放要求日益严格,针对折流板除雾器对粒径小于20μm的微细雾滴去除效率低的问题,设计了一种新型旋流管式除雾器。采用欧拉-拉格朗日的方法,对旋流管式除雾器内烟气的流动进行数值模拟,使用刚性球形水滴代替雾滴,采用RNG k-ε模型和离散相模型(DPM)模型进行连续相和离散相的交替耦合计算;研究了不同流速下旋流管式除雾器性能的变化;并在基于正交设计的模拟实验下研究旋流管式除雾器结构参数对除雾性能的影响。对基础结构旋流管式除雾器的模拟结果表明:在3~7 m/s的流速下对直径大于20μm的雾滴去除效率在99%以上;对直径在10~20μm的雾滴去除效率在86.5%以上;对直径在2~10μm的雾滴去除效率在51.3%以上;压降61.4~321.3 Pa,对微细雾滴的去除效率有显著提升。通过分析正交模拟试验结果,得到扭转角度(a)的增大和单管直径(d)的减小有利于提高雾滴的去除效率;随着a的增大、d的增大、H的减小会加大烟气流过除雾器的压降;得出了参数范围内以2~10μm除雾效率为指标的最佳结构d=100 mm,H=2 000 mm,a=900°;以10~20μm除雾效率为指标的最佳结...  相似文献   

5.
为了研究细颗粒物在除雾器中的运动扩散规律以提高除雾器细颗粒物脱除效率的计算精度,研究粒径小于15μm的雾滴在除雾器中的运动。分别采用欧拉法和拉格朗日方法计算气相场和雾滴轨迹;分别耦合连续随机轨道(CRW)模型和离散随机轨道(DRW)模型对不同粒径(3~15μm)的细颗粒物的脱除效率进行计算,并与实验值进行对比;采用大涡模拟方法(LES)对除雾器中细颗粒物的运动进行进一步对比分析。研究结果表明:2种随机轨道模型能够在一定程度上提高除雾器中细颗粒物脱除效率的计算精度,其对细颗粒物的扩散预测在各向同性的湍流中较准确,而在各向异性湍流中结果并不理想。  相似文献   

6.
由于高压水具有优良的热工水力学性能与成熟的工业基础,水冷陶瓷增殖(WCCB)包层成为中国聚变工程实验堆(CFETR)的一种主要的候选包层.为了研究所设计的WCCB包层内的流场分布与压降,采用三维计算流体动力学(CFD)数值模拟方法研究了WCCB包层全模块内的冷却剂流动.结果表明,在冷却板、分隔板和侧板中质量流量分布较均匀,而第一壁中则较不均匀(不均匀度约为30%).由于冷却板中流道较长及流动方向的频繁改变,最大压降出现在冷却板中.考虑到所设计联箱结构上的复杂性,综合考虑湍流模型对模拟结果的影响是必要的.湍流模型的敏感性研究结果表明,湍流模型对包层模块各部件质量流量分配的影响较小;然而,湍流模型对压降的影响是显著的.另外,由于第一壁流场分布得不均匀,有必要对现有包层模块的设计进行优化.  相似文献   

7.
螺旋折流板换热器壳侧流动的数值模拟   总被引:13,自引:1,他引:13  
采用多孔介质、分布阻力模型、阶梯逼近技术对螺旋折流板换热器壳侧的流动进行了三维数值模拟,湍流方程组的求解采用了改进的k-ε模型和壁面函数法.数值模拟结果表明,在相同的进口内径及相同的进口流量条件下,螺旋折流板换热器壳侧的压降明显低于弓形折流板换热器的,且随着螺旋角的增加,压降呈减小的趋势.在小流量条件下,计算所得的换热器进出口总压降与实验值之间的偏差大部分在14%以下,最大为18%,能符合工程计算的需要.  相似文献   

8.
研究设计了一种新型高效的除雾设备--直流降膜式旋风除雾器,以空气-水为实验物系,测定了φ250mm的直流降膜式旋风除雾器的压降及除雾效果。实验结果表明,压降随气速的增大而增大,出口气体含雾量随气速的增大仅略有下降。在此基础上,选定了最佳操作条件,进行了工业放大,工厂应用效果良好。  相似文献   

9.
低旋流燃烧和流动特性数值模拟研究   总被引:1,自引:0,他引:1  
为研究低旋流燃烧(LSC)技术背离传统旋流燃烧机理的燃烧方式,以及其所具有的燃烧效率高、稳定性强、火焰区域温度低和NOx排放量极低等特点,采用数值模拟方法,对LSC燃烧和流动特性以及受喷射器多孔板阻塞比的影响进行初步研究.结果表明:LSC喷射器能够形成典型扩散湍流流动和"扫帚形"低温火焰结构;多孔板阻塞比对LSC喷射器扩散湍流流动分布、中心线上轴向气流速度和湍流强度有很大影响.  相似文献   

10.
为降低传统旋风分离器工作时排气管内气流高速旋转造成的大量能量损失,将Lapple型旋风分离器的排气管改进为缝隙式排气管,利用数值模拟和实验的方法分析了缝隙式排气管对旋风分离器的性能影响.采用RSM模型对气相流场的切向速度、静压、流动轨迹、湍流强度以及压降进行数值模拟,采用多相流模型中的DPM模型对分离器的分离效率和颗粒运动轨迹进行仿真分析.仿真分析结果与实验验证结果吻合度较好,有较高的预报精度.最终结果表明,缝隙式排气管可使传统旋风分离器的压降下降6.8%,分离效率提升5.5%;当排气管上缝隙长度或宽度增加至一定数值,分离器的分离效率达到最大.随着排气管上缝隙长度或宽度的增加,旋风分离器的分离效率逐渐趋于稳定,压降持续降低;排气管上的矩形缝隙可使排气管内产生旋进涡核(PVC)现象,随着缝隙长度的增加,旋进涡核现象有所减弱,缝隙宽度的变化对旋进涡核现象影响较小;缝隙式排气管可有效抑制普通排气管中心处回流区的产生,并使普通排气管底部以及外旋流的湍流强度降低,从而减少排气管底部的短路流,提高分离效率.通过观察不同颗粒粒径的电石渣颗粒的运动轨迹,可知Lapple型旋风分离器与新型旋风分离器内部流场呈现出有利于固体颗粒分离的组合涡结构,排气管结构的改变并未影响分离腔的原始涡流结构.  相似文献   

11.
设计了一种低压降、大通量、高传质效率的导向立体喷射复合塔板(FVJT),在直径为800 mm的圆形塔内进行冷模实验,测得FVJT的干、湿板压降,雾沫夹带率,漏液率,清液层高度等流体力学数据,并通过富氧水解析实验分析塔板的传质性能;最后,根据干、湿板压降数据拟合得到压降关联式。对比研究了3种不同立体帽罩倾角对塔板性能的影响,结果表明:与新型垂直筛板(New VST)和F1浮阀塔板相比,本文所设计的FVJT干、湿板压降分别降低约20%~30%和10%~20%,传质效率提高了13%~17%,其中立体帽罩倾斜角为6°时传质效率最高。  相似文献   

12.
选择性催化还原脱硝系统烟道中导流板设计数值模拟   总被引:2,自引:0,他引:2  
采用Fluent对4种选择性催化还原(SCR,selective catalytic reduction)脱销系统烟道弯曲段导流板设置方案进行了模拟,模拟过程基于标准K-ε湍流模型和2D模型,通过对速度分布图和进出口压力降的分析,探讨了导流板设置对烟道出口速度分布、压差和能量损耗的影响,得出结论:在烟道中设置导流板,可以显著改善流场的分布.而合理的导流板设计不仅能使流速变得均匀,而且还可以降低烟道的能量损失和压降.当导流板设计过大时,虽能更好的改善流场,但因其本身对流体阻力的增大,将导致烟道的能量损失和压降增大.研究结果对SCR脱销系统的研发提供了参考.  相似文献   

13.
采用石灰石/石膏法脱硫工艺,结合蒸汽相变原理,实验考察了除雾器类型、脱硫净烟气特性、蒸汽添加量及同时在除雾器上喷低温水等对细颗粒物脱除性能的影响.结果表明:在脱硫净烟气中添加适量蒸汽,可显著提高细颗粒脱除效果,且脱除效率随蒸汽添加量增加而提高;丝网除雾器比板波纹除雾器更适于凝结长大细颗粒物的脱除;脱硫净烟气特性对细颗粒...  相似文献   

14.
针对目前汽车除霜除雾性能普遍不高的问题,采用RNG k-ε模拟的计算方法,对某车型前挡风玻璃除霜除雾性能改进进行了研究。首先,利用试验验证仿真方法的准确性;然后通过分析初始模型的除霜除雾性能,提出了在除霜除雾风道中添加4个导流板,把导流板的6个结构尺寸作为优化变量,将前挡风玻璃A,A′和B区的努赛尔数作为优化目标,同时为了提高优化效率,基于一种计算流体力学与优化算法相集成的方法,对除霜除雾风道结构进行优化改进进而得到最优参数;最后,将改进后的风道系统应用到除霜除雾性能分析。研究结果表明:在不增加空调送风量的前提下改进后的风道送风分布更加均匀,A区和A’区的努赛尔数分别提高了13.2%和7.7%,除霜除雾性能得到明显改善。  相似文献   

15.
Winpak是一种新型的规整填料.为了探讨其在液液单相混合过程中的应用前景,采用实验与计算流体力学(CFD)方法,对Winpak填料混合性能及其混合强化机制进行了研究.本文设计了包含压降测量以及取样分析的液液单相混合实验装置对Winpak填料混合性能进行测试.通过Standard k-ω 湍流模型,建立了液液单相混合过...  相似文献   

16.
利用致动线(Actuator Line Method,ALM)和大涡模拟(Large-Eddy Simulation,LES)结合的方法,采用4种亚格子模型,对低湍流度均匀来流中不同转速下两台串列风力机的气动性能和尾流干扰开展数值模拟研究,并探讨了亚格子模型对尾流场模拟的影响.两台风力机功率系数和推力系数,以及尾流场的轴向平均速度和雷诺应力分布的计算结果与实验值基本吻合,验证了ALM-LES方法对风力机尾流研究的可靠性.受上游风力机尾流的影响,下游风力机功率系数和推力系数大幅降低,最大功率系数仅为上游风力机最大功率系数的25%左右.与来流风况的低湍流度相比,风力机尾流场中湍流强度大幅提高.通过不同亚格子模型计算结果的对比分析,得出亚格子模型的选择对风力机气动性能和尾流场湍流特征参数的计算影响较小.  相似文献   

17.
针对传统弓形折流板换热器壳侧压降大的问题,提出交错百叶折流板管壳式换热器,通过三维数值模拟,对不同周期下的交错百叶折流板管壳式换热器性能进行研究,获得壳侧流场、温度场的换热和阻力性能.结果表明:与传统弓形折流板换热器相比,交错百叶折流板管壳式换热器壳侧形成了较好的螺旋状流动,温度场分布均匀;在相同的质量流量下,交错百叶折流板管壳式换热器壳侧压降显著降低,单位压降的传热系数最高提高110.51%,综合性能大幅提高.  相似文献   

18.
采用了一种新的混合LES-RANS(大涡模拟-雷诺平均模型)湍流模型模拟结晶器中钢液的流场.模型通过修正湍流黏度系数对水口和结晶器内湍流进行过滤,对大尺度的湍流直接采用Navier-Stokes方程求解计算,对小尺度的脉动采用标准k-ε模型进行计算.该模型能避免RANS的过分耗散并且能捕捉到更多的瞬态湍流信息.模型通过对连铸结晶器内液态金属GaInSn模型速度进行测量验证,速度测量方法为超声波多普勒测速仪(UDV)测速法.新模型与实验测量值吻合程度明显好于RANS模拟的结果,能更准确地预测结晶器和水口内的湍流行为.结晶器内瞬态流动特征表明,水口两侧流体呈周期性的偏流,周期约为5s.  相似文献   

19.
为研究不同湍流模型和壁面处理方法的组合对立方体建筑物在下击暴流风场中的风压系数模拟结果的影响,基于冲击射流模型建立下击暴流计算域,通过物理试验结果对模拟结果进行验证与对比分析.采用两种不同的网格划分方案,满足ANSYS-Fluent中对于不同壁面处理方法的壁面Y+值的要求.研究结果表明:在选用增强壁面处理情况下,剪切应力运输(SST)k-ω湍流模型在迎风面和背风面与试验结果符合较好,但是屋盖的模拟结果与试验结果相差较大;当选用标准壁面函数时,雷诺应力模型(RSM)展现出了与试验结果较符合的建筑物中线风压系数曲线.当模拟立方体建筑物在下击暴流风场中的表面风压时,相比其他湍流模型和壁面处理方法的组合,RSM湍流模型和标准壁面函数可以得到更好的数值模拟结果.  相似文献   

20.
湍流模型在折流板换热器壳侧结构优化中的应用   总被引:1,自引:0,他引:1  
研究不同湍流模型在换热器流场和传热计算中的适用性,分别采用Spalart-Allmaras湍流模型、标准k-ε湍流模型和可实现k-ε湍流模型计算换热器在不同入口速度下的出口温度、换热系数等参数.将3种湍流模型的CFD计算结果与Bell-Delaware理论计算值进行对比可知,Spalart-Allmaras湍流模型的换热器性能数值计算存在明显缺陷,可实现k-ε湍流模型的换热器CFD较其他两种湍流模型的更为适用.将适用性较好的可实现k-ε湍流模型进行CFD数值模拟,模拟结果表明挡切率为25%时换热器性能最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号